Adhikari KN, Buirchell BJ, Thomas GJ, Sweetingham MW, Yang H. 2009. Identification of anthracnose resistance in
Lupinus albus L. and its transfer from landraces to modern cultivars. Crop Pasture Sci. 60: 472–479.
http://dx.doi.org/10.1071/CP08092
Aletà N, Vilanova, A, Díaz R, Voltas J. 2009. Genetic variation for carbon isotope composition in
Juglans regia L.: Relationships with growth, phenology and climate of origin. Ann For Sci. 66(4): 413.
https://doi.org/10.1051/forest/2009021
Aliniaeifard S, Van Meeteren U. 2016a. Stomatal characteristics and desiccation response of leaves of cut chrysanthemum (
Chrysanthemum morifolium) flowers grown at high air humidity. Sci Hortic. 205: 84–89.
https://doi.org/10.1016/j.scienta.2016.04.025
Aliniaeifard S, Van Meeteren U. 2016b. Natural genetic variation in stomatal response can help to increase acclimation of plants to dry environments. In: International Symposium on the Role of Plant Genetic Resources in Reclaiming Lands and Environment Deteriorated by Human and Natural Actions. 1190: 71–76.
https://doi.org/10.17660/ActaHortic.2018.1190.12
Arab MM, Marrano A, Abdollahi-Arpanahi R, Leslie CA, Cheng H, Neale DB, Vahdati K. 2020. Combining phenotype, genotype, and environment to uncover genetic components underlying water use efficiency in Persian walnut. J Exp Bot. 71(3): 1107–1127.
https://doi.org/10.1093/jxb/erz467
Arab MM, Askari H, Aliniaeifard S, Mokhtassi-Bidgoli A, Estaji A, Sadat-Hosseini M, Sohrabi SS, Mesgaran MB, Leslie CA, Brown PJ,
et al. 2023. Natural variation in photosynthesis and water use efficiency of locally adapted Persian walnut populations under drought stress and recovery. Plant Physiol Biochem. 201: 107859.
https://doi.org/10.1016/j.plaphy.2023.107859
Athar H-u-R, Ambreen S, Javed M, Hina M, Rasul S, Zafar ZU, Manzoor H, Ogbaga CC, Afzal M, Al-Qurainy F,
et al. 2016. Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (
Zea mays L.) plants. Environ Sci Pollut Res. 23: 18320–18331.
https//doi.org/10.1007/s11356-016-6976-7
Bano H, Athar HU, Zafar ZU, Kalaji HM, Ashraf M. 2021. Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [
Vigna radiata (L.) Wilczek]. Physiol Plant. 172(2): 1244–1254.
https://doi.org/10.1111/ppl.13327
Behzadi Rad P, Roozban MR, Karimi S, Ghahremani R, Vahdati K. 2021. Osmolyte accumulation and sodium compartmentation has a key role in salinity tolerance of pistachio rootstocks. Agriculture. 11(8): 708.
https://doi.org/10.3390/agriculture11080708
Bresson J, Vasseur F, Dauzat M, Koch G, Granier C, Vile D. 2015. Quantifying spatial heterogeneity of chlorophyll fluorescence during plant growth and in response to water stress. Plant Methods. 11: 23.
https://doi.org/10.1186/s13007-015-0067-5
Demmig-Adams B, Stewart J, Baker C, Adams W. 2018. Optimization of photosynthetic productivity in contrasting environments by regulons controlling plant form and function. Int J Mol Sci. 19: 872.
https://doi.org/10.3390/ijms19030872
Dong Z, Men Y, Liu Z, Li J, Ji J. 2020. Application of chlorophyll fluorescence imaging technique in analysis and detection of chilling injury of tomato seedlings. Comput Electron Agric. 168: 105109.
https://doi.org/10.1016/j.compag.2019.105109
Fahimi Khoyerdi F, Shamshiri MH, Estaji A. 2016. Changes in some physiological and osmotic parameters of several pistachio genotypes under drought stress. Sci Hortic. 198: 44–51.
http://10.1016/j.scienta.2015.11.028
Guellim A, Hirel B, Chabrerie O. 2020. Screening for durum wheat (
Triticum durum Desf.) cultivar resistance to drought stress using an integrated physiological approach. J Crop Sci Biotechnol. 23: 355–365.
https://doi.org/10.1007/s12892-020-00043-8
Hu F, Zhang Y, Guo J. 2023. Effects of drought stress on photosynthetic physiological characteristics, leaf microstructure, and related gene expression of yellow horn. Plant Signal Behav. 18:1.
https://doi.org/10.1080/15592324.2023.2215025
Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Łukasik I, Goltsev V, Ladle RJ. 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 38(4): 102.
https://doi.org/10.1007/s11738-016-2113-y
Kassambara A, Mundt F. 2017. Factoextra: Extract and visualize the results of multivariate data analyses. R Package Version 1.0.7. Available at: https://cran.r-project. org/web/packages/factoextra/index.html (Accessed 4 October 2022).
Küpper H, Benedikty Z, Morina F, Andresen E, Mishra A, Trtílek M. 2019. Analysis of OJIP chlorophyll fluorescence kinetics and Q
A reoxidation kinetics by direct fast imaging. Plant Physiol. 179(2): 369-381.
https://doi.org/10.1104/pp.18.00953
Liu B, Cheng L, Liang D, Zou Y, Ma F. 2012. Growth, gas exchange, water-use efficiency, and carbon isotope composition of ‘Gale Gala’ apple trees grafted onto 9 wild Chinese rootstocks in response to drought stress. Photosynthetica. 50(3): 401–410.
https://doi.org/10.1007/s11099-012-0048-0
Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi E. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust J Crop Sci. 4: 580–585.
Mathur S, Mehta P, Jajoo A. 2013. Effects of dual stress (high salt and high temperature) on the photochemical efficiency of wheat leaves (
Triticum aestivum). Physiol Mol Biol. 19(2): 179–188.
https://doi.org/10.1007/s12298-012-0151-5
Sharma DK, Andersen SB, Ottosen CO, Rosenqvist E. 2015. Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol Plant. 153: 284–298.
https://doi.org/10.1111/ppl.12245
Sousaraei N, Mashayekhi K, Mousavizadeh SJ, et al. 2021. Screening of tomato landraces for drought tolerance based on growth and chlorophyll fluorescence analyses. Hortic Environ Biotechnol. 62: 521–535.
https://doi.org/10.1007/s13580-020-00328-5
Strasser RJ, Srivastava A, Tsimilli-Michael M. 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M (ed.) Probing Photosynthesis: Mechanisms, Regulation and Adaptation. London: Taylor and Francis, pp. 445-483.
Strasser RJ, Tsimilli-Michael M, Srivastava A. 2004. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC (ed.) Chlorophyll a Fluorescence. Netherlands: Springer, pp. 321–362.
https://doi.org/10.1007/978-1-4020-3218-9_12
Tomášková I, Pastierovič F, Krejzková A, Čepl J, Hradecký J. 2021. Norway spruce ecotypes distinguished by chlorophyll a fluorescence kinetics. Acta Physiol Plant. 43: 24.
https://doi.org/10.1007/s11738-020-03190-1
Viljevac Vuletić M, Horvat D, Mihaljević I, Dugalić K, Šimić D, Čupić T, Jurković V, Lepeduš H. 2022. Photosynthetic variability of Oblačinska sour cherry ecotypes under drought. Plants
. 11:
1764.
https://doi.org/10.3390/plants11131764
Wang X, Wu J, Yang Z, Zhang F, Sun H, Qiu X, Yi F, Yang D, Shi F. 2019. Physiological responses and transcriptome analysis of the
Kochia prostrata (L.) Schrad. to seedling drought stress. AIMS Genet. 6(2): 17-35.
https://doi.org/10.3934/genet.2019.2.17
Wójcik-Jagła M, Rapacz M, Tyrka M, Janusz Kościelniak J, Crissy K, Zmuda K. 2013. Comparative QTL analysis of early short-time drought tolerance in Polish fodder and malting spring barleys. Theor Appl Genet. 126(12): 3021–3034.
https://doi.org/10.1007/s00122-013-2190-x
Xiao X, Xu X, Yang F. 2008. Adaptive responses to progressive drought stress in two
Populus cathayana populations. Silva Fenn. 42(5): 705–719.
https://doi.org/10.14214/sf.224
Xu Z, Zhou G. 2008. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J Exp Bot. 59(12): 3317–3325.
https://doi.org/10.1093/jxb/ern185
Zhou R, Yu X, Kjær KH, Rosenqvist E, Ottosen CO, Wu Z. 2015. Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. Environ Exp Bot. 118: 1–11.
https://doi.org/10.1016/j.envexpbot.2015.05.006