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Introduction

The Persian walnut (Juglans regia L.) is an important dry fruit tree used worldwide for various
purposes, including nut production, timber, and byproducts like dyes and fragrances (Vahdati et al.
2018; VVahdati et al. 2020). These walnut trees are particularly vulnerable to drought stress, a situation
worsened by decreasing rainfall patterns in areas such as Central Asia (Aleta et al. 2009; Arab et al.
2020). Iran, a significant center for walnut production, has a rich diversity of walnut trees that
originated from seeds. Obviously, this means of production provides a great diversity and valuable
resource for developing drought-tolerant varieties, as different genotypes exhibit unique
physiological and morphological responses to this stress. Collecting and identifying resilient
genotypes from natural populations is essential for breeding programs focused on improving drought
tolerance.

Drought stress leads to several detrimental effects in plants, including reduced photosynthesis,
chlorophyll breakdown, disrupted leaf water balance, stomatal closure, decreased growth and yield,
and heightened susceptibility to pests (Aliniaeifard and van Meeteren 2016a, 2016b). The response
of a plant's photosynthetic system to drought stress is influenced by the genotype and the severity of
the drought (Xiao et al. 2008; Sousaraei et al. 2021). Non-destructive techniques, such as chlorophyll
fluorescence analysis, have become important tools for identifying drought-tolerant genotypes,
allowing for the assessment of plant health without causing damage (Adhikari et al. 2009). Measuring
changes in the photosynthetic system is one of the effective methods for predicting drought tolerance
in plants (Bresson et al. 2015; Demmig-Adams et al. 2018). The fast chlorophyll a fluorescence
induction (OJIP) test is particularly useful for understanding how photosynthesis responds to stress,
as it detects the damage to photosystem 11 (PSII) within the photosynthetic electron transport chain
(Klpper et al. 2019). These techniques provide valuable insights into electron transfer rates and
alterations in PSII functionality under stress conditions (Kalaji et al. 2016). Key indicators for
evaluating PSII performance during abiotic stress include the maximum quantum efficiency of PSII
(Fv/Fw), the apparent antenna size of an active PSII reaction center (ABS/RC), and the photosynthetic
performance index based on absorbance (Pl-ags) (Sharma et al. 2015; Athar et al. 2016; Kalaji et al.
2016). Chlorophyll fluorescence evaluation has proven useful in identifying drought-tolerant
genotypes in various crops, including walnuts (Arab et al. 2023), wheat (Guellim et al. 2020),
tomatoes (Sousaraei et al. 2021), grapes (Su et al. 2015), mung beans (Bano et al. 2021), sunflowers
(Cicek et al. 2019), and forest spruce (Tomaskova et al. 2021).



Enhancing drought resilience in Persian walnut genotypes: Insights from photosynthetic... 357

This study focused on assessing 115 native walnut genotypes from Khorasan Razavi province,
Iran, using chlorophyll fluorescence, relative leaf water content (RWC), and the greenness index to
uncover traits related to drought tolerance. The primary goals were to identify genotypes resilient to
drought and to conduct a phenotypic evaluation of photosynthetic traits to guide future cultivation
and breeding initiatives.

Materials and Methods

A total of 115 walnut genotypes were collected from five cities in the Khorasan Razavi province,
Iran, encompassing arid and semi-arid regions. The characteristics of the collection sites are detailed
in Table 1. Each population was situated in a distinct habitat with varied environmental conditions,
including climate, geology, and topography. The mother trees were open-pollinated seedling trees
aged from 75 to 500 years, originating from ecologically diverse regions such as Torbat-e Jam,
Shadmehr, Gonabad, Bayg, and Torbat-e Hydarieh.

Table 1. Location, height, and total annual rainfall (mm/year) of five different geographical areas of Khorasan
Razavi Province, Iran, where local landraces were collected (Iran Meteorological Organization 2021).

City Gerllloc::.ype Site location AI'Eir';L;de Total(?r:l;sle ;z;\)infall
Torbat e hydarieh 19 35°25'N 59°09'E 1351 214
Torbat e jam 11 35°14'N 60°37'E 906 110
Bayg 44 35°22'N 59°2'E 1529 182
Shadmehr 22 35° 10'N 59° 2'E 1206 95
Gonabad 19 34°21'N 58° 41'E 1096 86

Experimental design

This study was conducted on saplings of 1-year-old half-sib families of 115 native genotypes from
various regions of Khorasan Razavi province, characterized by hot and arid climatic conditions. Seeds
obtained from the 115 families were cultivated in a common orchard to assess the photosynthetic
performance of the progeny under water-deficit stress and well-watered conditions. The seeds (20
seeds per family) were collected from mature Persian walnut trees in the Khorasan Razavi province,
Iran, stratified, germinated, and grown in 7-L polyethylene pots (15 x 40 cm) filled with a potting
mix (2:1:1, soil: sand: leaf manure) under ambient greenhouse conditions (25 + 2 °C). After nine
months, the saplings were transplanted into 15-L polyethylene pots (20 x 50 cm) with an adequate
volume for the 15-month-old seedling root growth. Two months before the drought stress experiment,
the saplings were transferred to an environmentally controlled greenhouse at the Research
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Greenhouse of the Department of Horticulture, University of Tehran, Pakdasht, Tehran, Iran. The
plants were irrigated to maintain soil hydration and fertilized for two months with macro- and micro-
nutrients (Figure 1). The saplings were divided into two groups (with three replications): well-watered
(above 75% field capacity) and severely water-deficient (~25-35% field capacity). The field capacity
and permanent wilting point were determined using the soil water retention curve. This experiment
was conducted in the form of a completely randomized block design with three replications in each

irrigation condition.

Identification and collection of 115 local walnut families from Khorazan province
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Relative water content (RWC)

Drought response of the plants was graded on a scale of 1-7 based on visual appearance. Also, leaf
discs were collected, and RWC was calculated using the formula RWC = [(FW-DW)/(TW-DW)] x
100, where FW is the fresh weight, TW is the turgor weight, and DW is the dry weight.
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Chlorophyll fluorescence

OJIP transients were recorded by using a portable fluorometer (Fluor pen FP 100-MAX, Photon
Systems Instruments, Drasov, Czech Republic) after 20 min dark adaptation, in young fully-expanded
walnut leaflets from the middle part of the saplings for each plot. Before performing the test, to make
sure the reaction centers of the PSII were closed, we put saplings in the dark overnight so that the test
would end before dawn. Minimum fluorescence (Fo) was measured at 50 ps, corresponding to the
state when all PSII reaction centers are open, representing the O step. The leaflet samples were
immediately exposed to a saturating light of ~3000 pmol m~2 s~ %, and fluorescence intensity at 2 ms
(J-step, FJ), 30 ms (I-step, FI), and when all the active receptors of PSII reaction centers were
deactivated, i.e. at the time of maximum fluorescence intensity (P step), were recorded for further
calculations. In addition, to detect the amount of damage to the electron receptors in PSII, other
calculation methods, presented by Strasser et al. (2000), were used. Some important characteristics,
including the performance index (Plass), PSII maximum photochemical efficiency (Fv/Fwm),
maximum quantum yield of energy trapping by PSII (Phi-Do), quantum yield of intersystem electron
transport (Phi-Eo), PSII antenna size (ABS/RC), trapped energy flux (TRo/RC), electron transport
flux per reaction center (ETo/RC), and dissipated energy flux (D1o/RC) were recorded to provide more
structural information on the photosynthetic apparatus (Strasser et al. 2000, 2004). The definition and

calculation of the most important chlorophyll fluorescence characteristics are described in Table 2.

Drought tolerance evaluation

To assess the drought tolerance, the average response of each family to drought stress for all measured
traits was expressed using the drought stress index (DSI) described by Woéjcik-Jagta et al. (2013) and
calculated as follows: DSI = (value of the trait under water-deficit-stressed conditions)/(value of the

trait under well-watered conditions) x 100.

Statistical analysis

Fourteen indicators were utilized for the analysis. Each trait was measured with three replications per
family, and the data were processed using Microsoft Excel. Analysis of variance and mean
comparisons were performed using SPSS Statistics version 21.0 (IBM Inc., Armonk, NY, USA).
Means were compared using Duncan's multiple range test. Correlation coefficients were calculated,
and principal component analysis (PCA) was performed, employing the factoextra package
(Kassambara and Mundt 2017) in R.
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Table 2. The formulae and definitions of chlorophyll fluorescence characteristics (Strasser et al. 2004) measured in
this study, with their broad classification.

Phenotype

Trait Formula Definition
category
ELui:)Srescence Fm/Fo Relative maximal variable fluorescence
Fv/Fo Maximum efficiency of photochemistry
Fv/Fm (Fwm - Fo)/Fm Maximum yield of primary photochemistry
_ —a Likelihood that a trapped exciton can move an electron
Yo #0=ETo/TRo =1- VJ further than plastoquinone (QA)
(PEO S;;;E\;—O/ ABS = (1-(Fo/ Quantum yield of electron transport
®DO ®po = 1- Opo = (Fo/Fm) Quantum yield at time 0 for energy dissipation
Dpav Dpav = Qpo (1- Vav) Average quantum yield of primary photochemistry
Performance index of PSII normalized for equal
Plass (RC/ABS) x (@ro/1- @ro) absorption
ABS/RC QBO)S/RC = MO x (1)) x (1 Energy absorption by antenna per reaction center
p
TRo/RC TRo/RC = Mo x (1/VJ) Flux of excitons trapped per reaction center
ETo/RC ETo/RC = Mo x (1/V]) x Y0 Energy flux for electron transport per reaction center
DIo/RC DIo/RC= (ABS/RC)- Flux ratio of energy dissipation per reaction center

(TRo/RC)

Drought scoring system based on the appearance

Drought score DS characteristics of seedlings

RWC RWC (FW - DW)/ (TW — DW) Leaf relative water content

Results

Analysis of variance of 115 Persian walnut families under different irrigation conditions for the
physiological characteristics were presented in Supplementary Table 1. Significant differences were
observed among families in terms of the studied traits in each of the normal and water-deficit stress
conditions. Based on the assessment of SPAD index, leaf RWC, DSI index, PCA, and visual
appearance, the families were tentatively categorized into three groups: sensitive, moderately tolerant,
and tolerant. Significant differences were observed among the 15 selected families (five from each of
the three categories) in terms of the studied traits in each of the normal and water-deficit stress
conditions (Supplementary Table 2). Also, according to Figures 2 and 3, significant differences are
seen among the 15 selected families in each of the normal, water-deficit stress, and recovery
conditions for RWC, SPAD, F./Fw, and Fm/Fo. Considering the average of all families, drought stress
reduced RWC, SPAD, and photosynthetic indices, except for Phi-Dg, Phi-Pav, ABS/RC, DI¢o/RC, and
TRo/RC, which showed an increased value as expected; however, the increase in TRo/RC was
negligible (Table 3). The tolerant families exhibited smaller changes from normal to drought stress,
compared to the sensitive families for RWC, SPAD, Fv/Fwm, and Fm/Fo. Sensitive families had the
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Table 3. Descriptive statistics of 115 walnut seedling attributes under non-stress and water-deficit stress conditions.

Control Drought stress

Statistics ~ Min Max Mean  Variance de\figjt.ion (Co/:/) Min Max  Mean Variance de\ig}on %/l/
RWC 70.10 829 76.7 13.21 3.63 474 46.4 77.9 61.6 33.7 5.8 9.4
SPAD 40.02 55.9 417 20.9 4.57 9.58 15.7 37.9 28.1 175 4.2 14.9
Fm/Fo 4.03 5.4 45 0.122 0.35 778 1212 3.951 29 0.33 0.57 19.5
Fv/Fo 3.03 4.45 353 0.122 0.35 9.92 0212 2951 19 0.33 0.58 29.4
Fv/Fm 0.73 0.84 0.78 0.0004 0.02 2.56 0.416 0.751 0.6 0.01 0.07 10.8
Psi_o 0.23 0.53 0.4 0.003 0.06 13.69 0.088 0.475 0.3 0.0036 0.06 20.6
Phi_Eo 0.18 0.43 0.31 0.003 0.05 17.67 0.038 0.348 0.2 0.0036 0.06 29.2
Phi_Do 0.16 0.261 0.22 0 0.02 9.5 0.246  0.585 0.3 0.01 0.06 19.8
Phi_Pav 9274  985.2 951.2 169.6 13.02 1.37 9186 988.7 968 133 115 12
Pi_Abs 0.4 1.998 0.9 0.124 0.35 38.2 0.008 0918 0.29 0.04 0.2 65.4
ABS/RC 2.2 3.467 2.8 0.101 0.32 11.3 245 4934 35 0.3 0.5 155
TRo/RC 173 2714 22 0.05 0.22 10.2 145 2916 23 0.06 0.25 11.0
ETo/RC 0.5 1.239 0.88 0.019 0.14 15.6 027  1.036 0.7 0.02 0.13 18.7
Dlo/RC 0.4 0.86 0.62 0.012 0.11 173 0.6 2.409 12 0.17 0.4 33.2

largest decrease in RWC, SPAD index, Fv/Fwm, and Fm/Fo, compared to the moderately tolerant and
tolerant families (Figures 2 and 3). In these plant families, the DSI index ranged from 25 to 41%, but
in tolerant families this index was higher than 86%. All plant families were able to recover their initial
state after re-irrigation. The recovery rate in the tolerant families was higher than in the sensitive
families. Sensitive families still had drooping and yellow leaves after 10 days of re-irrigation.
Sensitive families experienced leaf shedding with leaves turning approximately 70% yellow, while
tolerant families showed no change in leaf color or shedding.

The SPAD values ranged from 15 to 23 in the sensitive families, from 24 to 27 in the moderately
tolerant families, and from 28 to 37 in the tolerant families. According to Table 3, the phenotypic
coefficient of variation for the SPAD index was 9.58% under control conditions and 14. 9% under
water-deficit stress conditions, showing the larger differentiation of the walnut families in the stress
conditions.

RWC decreased in all genotypes due to drought stress, compared to the normal conditions.
Among the selected tolerant families, the highest and lowest changes in RWC were observed in
families B31 and B68, respectively (Figures 2 and 3). The phenotypic coefficient of variation in the
families under drought stress and control conditions ranged from 9.42% to 4.73%, respectively (Table
3), again showing the larger differentiation of the walnut families in the drought stress conditions in
terms of RWC.
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Figure 2. The results of changes in the traits RWC (A) and SPAD (B) in five selected sensitive (B15, G94, TJ135, TH52,
TH54), moderately tolerant (TH83, TJ130, S196, B13, B29), and tolerant (G107, B142, B68, B66, B31) families of
Persian walnut. The different letters represent significant differences according to Duncan's multiple range test within
each environmental condition.

Bk e

Bls TI13s THS3? TJ130 5196 Bl3 G107  Bl42

[

A

e

Fm/Fo
[*] L]

[

L]

@FmFo control EFm/Fostreez HFmFo recovery

0.9

£ ¢ ca cccddcbbdcd
B 0.8
0.7
0.6
l_g 0.5
04
0.3
0.2
0.1
0
Bl§ ©%4 TI3S THS2 THH THE? TJ130 5196 Clo7  Bl4z
Genotypes

EFvFmcontrol @FvFmstress WFvWFmrecovery

Figure 3. The results of changes in the traits of Fu/Fo (A) and Fv/Fm (B) in five selected sensitive (B15, G94, TJ135,
TH52, TH54), moderately tolerant (TH83, TJ130, S196, B13, B29), and tolerant (G107, B142, B68, B66, B31) families
of Persian walnut. The different letters represent significant differences according to Duncan's multiple range test within
each environmental condition.



Enhancing drought resilience in Persian walnut genotypes: Insights from photosynthetic... 363

The analysis of photosynthetic indices revealed a general decrease under drought stress. The
phenotypic coefficient of variation for these parameters ranged from 1.2% to 33.2% under drought

stress and from 2.56% to 38.2% in normal conditions (Table 3).

Principal component analysis

The results of PCA showed that the first and second components had the largest share of data
dispersion in the control conditions with 50.6% and 18.2%, respectively (Figure 4A and 4C). Under
drought stress conditions, the first (73.4%) and second (10.2%) components explained a large
proportion of variation (Figure 4B and 4D). Based on the obtained data, some photosynthetic
parameters such as TRo/RC, DIo/RC, and ABS/RC, although they were the main components of the
PC1 and played a large role in the grouping of genotypes, had similar patterns and positive
correlations in both normal and stress conditions. In contrast, although SPAD, RWC, and ETo/RC
were also the main components of the PC1, they played a significant role in discriminating between
normal and water-deficit stress conditions, because their pattern was different in these conditions.
RWC and SPAD were not discriminating in normal conditions; however, they were more effective in
discrimination of the walnut families under water-deficit stress conditions (Figure 4A and 4B).

In normal conditions, the traits Fm/Fo (0.79), Fv/Fo (0.79), Fv/Fm (0.89) Psi-o (0.81), Phi-Eo (0.88),
Phi-Do (-0.89), Phi-Pav (-0.54), P1-ass (0.95) and DIo/RC (-0.87) were included in the first component
and the traits ABS/RC (0.76), TRo/RC (0.86) and ETo/RC (0.83) were included in the second
component. In the drought stress conditions, the traits RWC (0.88), SPAD (0.94), Fm/Fo (0.95), Fv/Fo
(0.95), Fv/Fm (0.94) Psi-o (0.79), Phi-Eq (0.93), Phi-Do (-0.87), Phi-Pav (-0.74), Pl-ags (0.91),
ABS/RC (-0.78), ETo/RC (0.68), DIo/RC (-0.93) and DSI (0.92) were included in the first component,
and only the TRo/RC (0.91) index was included in the second component.

Based on PCA, families TH54, G94, S190, B39, TH52, B37 and B15had were considered as
sensitive families. On the other hand, families B149, B142, S191, TH70, B66, B68, B34, G111, and
B125 were determined as drought-tolerant families (Figure 4D).

Drought tolerance evaluation
The results showed that, tentatively, 20 families were classified as sensitive and 11 families as
resistant. The remaining families fell into the moderately tolerant categories. Therefore, PCA and

drought-stress assessment were able to tentatively identify tolerant and sensitive families.
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Figure 4. Principal component analysis of 115 families of Iranian walnut under control and drought stress conditions.
Distribution of traits under control conditions (A), distribution of traits under drought stress conditions (B), distribution
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In the control and drought stress conditions, traits or families marked in red showed greater response in each environment.

Pearson correlation coefficients

The heatmap of correlation coefficients between walnut traits in the control and drought stress
conditions are shown in Figure 5. Under control conditions RWC only had a significant, but weak,
correlation with SPAD (-0.19, p <0.05). Although SPAD showed a significant (p < 0.05) correlation
of trait with TRo/RC (-0.18), ABS/RC (-0.2) and DIo/RC (-0.2), but these correlations were also weak.
All photosynthetic characteristics were significantly correlated with each other, except for the
correlation of TRo/RC with Phi-Pav. Some of the strong correlations are as follows: Fm/Fo with Fy/Fum
and Phi-Do (0.726 and -0.747, respectively); Fu/Fo with F/Fm and Phi-Do (0.726 and -0.747,
respectively); Fv/Fm with Phi-Eo, Phi-Do, Pl-ass, and DIo/RC (-0.741, -0.931, -0.841, and 0.788,
respectively); Psi-o with Phi-Eo, PI-ABS, and ETo/RC (-0.945, -0.841, and -0.721, respectively; Phi-Eo
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with Phi-Do, Pl-ags, and ETo/RC (-0.749, -0.888, and -0.708, respectively); Phi-Do with Pl-ags and
DIo/RC (-0.820 and 0.791, respectively); Pl-ass with DIo/RC (0.846); ABS/RC with TRo/RC and
DIo/RC (0.958 and 0.883, respectively); and TRo/RC with DIo/RC (0.757).

Under drought stress, all measured traits were significantly correlated, except for the correlation
of TRO/RC with RWC, SPAD, Fw/Fo, Fv/Fo, and Fv/Fwm, and correlation of TRo/RC with ETo/RC and
DSI. Contrary to the normal conditions, RWC and SPAD were significantly correlated (positively or
negatively) with all of the photosynthetic characteristics, except for TRo/RC; all of these correlations
were either moderate or high, ranging from the absolute values of 0.550 to 0.967. RWC was also
highly and significantly correlated with SPAD. The DSI index also showed significant correlations
(positive or negative) with all of the studied characters, except for TRo/RC; all of these correlations

were either high or moderate with the range of 0.586 to 0.941 in absolute values (Figure 5).
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Figure 5. Correlation coefficient of photosynthetic traits (TRo/RC, ABS/RC, DIo/RC, Phi-Do, Phi-Pav, Pl-ags, Fv/Fwm,
Fm/Fo, FulFo, Phi-Eq, Psi-g, ETo/RC), relative water content (RWC), and chlorophyll index (SPAD) in 115 walnut plant
families under control (A) and drought stress (B) conditions. Dark red and blue colors indicate strong positive and negative
correlation, respectively, among the measured traits. Also, significant levels at p < 0.05, p < 0.01, and p < 0.001 are
marked with *, ** and ***, respectively.

Discussion
Weather conditions are vital for the successful cultivation of fruit trees, as environmental stresses like

drought and heat can significantly impact horticultural crops, particularly temperate fruit trees.
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Walnut trees are especially susceptible to drought stress, which can result in decreased yield,
heightened vulnerability to pests, and even tree mortality. These issues have limited cultivation efforts
and led to substantial yield reductions in arid and low-water areas. By identifying and evaluating
germplasm in these regions, we can harness valuable genetic resources to develop programs focused
on improving drought-stress tolerance and enhancing the cultivation of drought-tolerant trees. To
identify valuable genotypes that are tolerant to drought stress and well-suited to arid conditions, we
collected seeds from 115 local genotypes of arid and semi-arid areas of Iran and subjected them to
drought stress. We observed diverse responses in RWC among the Persian walnut families. RWC is
a critical indicator of drought tolerance in plants (Fahimi Khoyerdi et al. 2016) and often reflects the
initial effects of drought stress, typically decreasing as drought conditions worsen. Tolerant plants
maintain stable water content levels and show less sensitivity to fluctuations in RWC. Arab et al.
(2023) reported a negative correlation between drought stress and RWC, noting varying responses
among different genotypes. In our study of native walnut genotypes, we found that the RWC of
tolerant families ranged from 77.9% to 82.9%, with the most resilient individuals hailing from regions
located at altitudes between 1,200 and 1,300 meters. The variations in RWC observed among different
plant families can be attributed to differences in leaf cell size and wall thickness as they adapt to
drought stress (Liu et al. 2012). Maintaining a balanced photosynthetic system is crucial during
abiotic stresses, as a strong photosynthetic capacity enhances stress resistance and helps plants cope
more effectively with adverse conditions. Previous studies have demonstrated that plant genotypes
from different altitudes exhibit varying photosynthetic efficiencies when subjected to drought stress
(Tomaskova et al. 2021; Viljevac Vuleti¢ et al. 2022).

Our analysis of transient OJIP indices among walnut families from different regions exposed to
drought stress revealed diverse results. The OJIP test, which assesses bioenergy determination,
evaluates the function of reaction centers and examines both donor and acceptor centers of
photosystem Il (PSII). Under drought stress, we observed a decrease in indices such as the maximum
initial photochemical efficiency of PSII, maximum quantum efficiency of PSII, trapped oxidation,
quantum efficiency of electron transfer, and the photosynthetic performance index based on
absorption. Conversely, indicators such as the quantum efficiency at zero time for energy loss, the
size of the apparent antenna of active PSII, the maximum trapped oxidation in the two photosystems,
and the ratio of energy loss flux in each reaction center increased. Maintaining photosynthetic balance
is critical during abiotic stresses, as a robust photosynthetic system enhances stress resistance,
enabling plants to better cope with stress. Studies have shown that the performance and efficiency of

a plant's photosynthetic system decline under various stresses, including cold (Dong et al. 2020),
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drought (Cicek et al. 2019; Arab et al. 2023), heat (Zhou et al. 2015), salinity (Mathur et al. 2013),
and nutrient deficiency (Hu et al. 2023).

The results of PCA and Pearson correlation showed that RWC, SPAD index, Fm/Fo, Fv/Fo, Fv/Fm
and Pi-ass were positively correlated under water-deficit stress conditions; However, RWC was not
significantly correlated with the photosynthetic characteristics under normal conditions and the SPAD
was only significantly, but weakly, correlated with three traits, including TRo/RC, ABS/RC, and
DIo/RC. More important, based on PCA, we observed that under water-deficit stress conditions, RWC
and SPAD were more discriminating among the walnut families than under normal conditions,
indicating their efficiency in identify drought-tolerant families. Based on the results obtained in the
resistant families under drought stress, these traits cause stability, water conservation, and greenness
of plants against drought stress. In plant families TH70, S191, B149, B66, B68, and S201, which
were identified as tolerant, these traits had lower reduction in RWC, SPAD, and photosynthetic
characteristics as compared to the control conditions. However, in the families TH52, TH54, S190,
B39, G94, B15, B37, and TG134, which were identified as susceptible families, SPAD, RWC, and
some traits related to chlorophyll fluorescence were severely reduced under drought-stress conditions.
The results of principal component analysis can confirm the efficiency of the SPAD, RWC, and some
traits related to chlorophyll fluorescence, in selecting susceptible and tolerant families. The results of
our experiment were consistent with previous reports on walnut (Arab et al. 2023), almond (Karimi
et al. 2015) and pistachio (Fahimi Khoyerdi et al. 2016).

The OJIP test is an excellent tool for understanding the adaptability and resilience of plant
genotypes under stress, enabling us to identify tolerant varieties for breeding programs. In our study,
we found significant variations in OJIP indices among walnut families, with some displaying higher
photosynthetic efficiencies under drought stress. These robust families are promising candidates for
further evaluation and could be useful in breeding programs aimed at enhancing drought tolerance in
walnut trees. Our research underscores the importance of identifying and characterizing walnut
families that are resilient to drought stress for sustainable cultivation in arid and semi-arid areas. By
evaluating physiological characteristics such as RWC, SPAD index, stomatal density, chlorophyll
content, and OJIP indices, we can effectively assess the stress tolerance and adaptability of walnut
genotypes to drought conditions. The insights gained from this study provide valuable information
for breeding programs focused on developing drought-tolerant walnut varieties, ultimately enhancing

the resilience and productivity of walnut cultivation in water-limited environments.
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Conclusion

Our study revealed that local walnut populations display a wide range of photosynthetic and
physiological responses to drought stress. We assessed photosynthetic-related traits across 115 walnut
families cultivated in a controlled greenhouse, examining both well-watered and water-stressed
conditions. Our results indicated that characteristics such as RWC, SPAD, and various chlorophyll
fluorescence metrics (Fv/Fo, ETo/RC, Fv/Fwm, Pl-ags, Phi-Eo, Psi-o, and Fm/Fo) decreased under water-
deficit conditions. Conversely, indices like DIo/RC, TRo/RC, ABS/RC, Phi-Pav, and increased in
these walnut families. Through principal component analysis and drought stress evaluation indices,
we tentatively categorized the walnut families into three groups: drought-tolerant, moderately
drought-tolerant, and drought-sensitive. The drought-tolerant group showed smaller changes across
most measured characteristics from normal to water-deficit stress conditions. Notably, families G107,
B31, B66, B68, and B142 from arid areas in Khorasan Razavi Province, Iran, demonstrated the
highest photosynthetic efficiency under drought conditions. PCA of phenotypic data highlighted that
chlorophyll fluorescence characteristics (Fv/Fm, Fwm/Fo, Fv/Fo, Pi-ass, ABS/RC, TRo/RC, and
DIo/RC), along with RWC and SPAD, can be effective biomarkers for identifying drought-tolerant
genotypes of Persian walnut. This study emphasizes the critical role of genetically diverse resources,
particularly the G107 and B142 families, which exhibit significant drought-tolerance potential. These
families could play an essential role in breeding programs focused on enhancing walnut adaptability

to drought stress.
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