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Article Info Abstract 

Article type: Objective: Malt quality in barley is a complex quantitative trait governed by 

multiple genes and influenced by environmental factors, making genetic 

improvement challenging. The present study aimed to integrate QTL data from 

multiple independent studies through meta-analysis to identify stable, 

consensus genomic regions (MQTLs) controlling key malt quality traits. The 

ultimate goal was to provide reliable genomic targets for marker-assisted 

selection to accelerate breeding programs for improved barley malt quality. 

Methods: A comprehensive literature search was conducted across Web of 

Science, Scopus, PubMed, ScienceDirect, and Google Scholar to identify all 

published QTL studies related to barley malt quality. A high-density consensus 

genetic map was constructed by integrating several well-established reference 

maps. The unified map incorporated multiple marker systems, including 

AFLP, SSR, RFLP, RAPD, SAP, DArT, EST, CAPS, STS, RGA, IFLP, and 

SNP markers, ensuring comprehensive genome coverage. Individual QTLs 

were projected onto the consensus map, and the optimal number of MQTLs 

per chromosome was determined using the Akaike Information Criterion, 

Bayesian Information Criterion (BIC), and empirical Bayesian procedures. To 

validate the biological relevance of the identified MQTLs, genes located within 

2 Mb intervals flanking each MQTL peak position were retrieved from major 

genomic databases, including EnsemblPlants, GrainGenes, NCBI Gene, and 

BarleyMap. 

Results: Through meta-analysis, the 184 individual QTLs were consolidated 

into 35 MQTLs distributed across all seven barley chromosomes. The most 

significant MQTL, designated MQTL7.2, harbored 25 overlapping QTLs and 

explained 68% of the phenotypic variance. MQTL6.4 contained 12 QTLs 

controlling alpha-amylase, diastatic power, viscosity, beta-glucan, Wort 

beta-glucan, and grain protein content, explaining 38% of phenotypic variance. 

Gene mining within MQTL intervals identified 54 unique candidate genes. 

Gene ontology enrichment analysis revealed significant involvement in 
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monoatomic anion transport, tetracycline transmembrane transport, mRNA 

pseudouridine synthesis, and transmembrane transporter activity. MicroRNA 

prediction revealed 33 unique miRNAs regulating the identified genes, with 

hvu-miR6192, hvu-miR6184, hvu-miR6182, hvu-miR6176, hvu-miR6189, 

and hvu-miR6214 targeting multiple genes.  

Conclusion: The identified MQTLs exhibited substantially reduced 

confidence intervals compared to individual QTLs, providing more precise 

genomic targets for breeding applications. Eleven major MQTLs with R² 

values exceeding 20% represented high-priority genomic regions for 

marker-assisted selection. The Mega-MQTL7.2, explaining 68% of 

phenotypic variance and harboring QTLs for multiple malt quality parameters, 

represents a particularly valuable breeding target. These findings will facilitate 

marker-assisted selection strategies to accelerate genetic improvement of 

barley for the malting and brewing industries, ultimately contributing to the 

development of superior malting barley cultivars with enhanced quality 

characteristics. 
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Introduction 

Barley (Hordeum vulgare L.) ranks as the fourth most important cereal crop globally after wheat, rice, 

and maize, and serves as an excellent model for genetics and genomics research. This crop 

demonstrates remarkable environmental plasticity across diverse agro-ecological zones due to its 

extensive evolutionary adaptation (Zhou et al. 2009; Zhou et al. 2012a; Ghomi et al. 2021). Barley 

is utilized primarily for animal feed, malting, brewing, and human consumption, with its distinctive 

chemical composition and health-promoting dietary fibers attracting considerable attention from 

agriculturists and nutritionists (Farag et al. 2022). The malting industry represents a particularly 

significant economic sector, with global annual production capacity exceeding 22 million tons, over 

90% of which derives from barley (Oliveira et al. 2012; Rani and Bhardwaj 2021). The malting 

process involves controlled partial germination followed by drying, during which seed cell walls are 

degraded and diastatic enzymes are activated to hydrolyze starch into fermentable sugars, producing 

malt extract essential for brewing and distilling industries (Gubatz and Shewry 2011). 

Meta-analysis, proposed by Glass (1976), uses a combination of various studies to create more 

precise and meaningful forecasts. Extensive QTL mapping studies have generated substantial and 
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often overlapping datasets for various agronomic traits in crops (Goffinet and Gerber 2000). QTL 

meta-analysis systematically reviews and synthesizes these reported QTLs to consolidate redundant 

information and identify refined, high-confidence genomic regions termed ‘meta-QTLs’ (MQTLs), 

which represent consensus chromosomal intervals with enhanced statistical power and reduced 

confidence intervals (Arcade et al. 2004; Veyrieras et al. 2007). 

The identified MQTLs have shorter confidence intervals than individual QTLs, which leads to a 

deeper understanding of the genetic framework of the complex traits, and subsequently, a consensus 

linkage map is generated that shows different QTLs using a simple scaling law (Kaur et al. 2023; 

Kumari et al. 2024). The MQTL approach integrates QTL data from independent mapping 

experiments to identify consistent chromosomal regions associated with quantitative traits such as 

yield and yield-related components, while simultaneously enhancing statistical power and improving 

precision in QTL detection (Goffinet and Gerber 2000; Arcade et al. 2004). Candidate genes 

associated with these QTLs have been proposed in several studies (Khahani et al. 2019; Akbari et al. 

2022). This integrative approach combining QTL mapping with gene annotation has been 

successfully applied across a range of major crops, including wheat (Kumar et al. 2021; Saini et al. 

2021, 2022; Tanin et al. 2022; Kumar et al. 2023), rice (Sandhu et al. 2021; Anilkumar et al. 2022; 

Kumari et al. 2023), barley (Li et al. 2013; Zhang et al. 2017; Akbari et al. 2022), and maize (Kaur 

et al. 2021; Makhtoum et al.  2021a; Makhtoum et al.  2021b; Sheoran et al. 2022; Makhtoum et al.  

2022a; Makhtoum et al.  2022b; Wang et al. 2022; Gupta et al. 2023; Karnatam et al. 2023; Sethi et 

al. 2023) 

As mentioned above, malt barley is used in the food and beverage industries. To identify and 

publish quality malt types, many quality traits are involved in detecting the proper barley grain 

(Carvalho et al. 2021; Farag et al. 2022). Using a mapping population derived from the Baudin × AC 

Metcalfe cross, 16 QTLs associated with seven malt quality traits were identified across four barley 

chromosomes, with 1 to 4 QTLs detected per trait at LOD threshold values > 3.0. Zhou et al. (2016) 

identified a major QTL in the telomeric region of chromosome 5H that pleiotropically controlled malt 

extract yield, soluble protein content, free amino nitrogen, and α-amylase activity, explaining 25.6-

33.2% of the phenotypic variance for these traits. Additionally, four QTLs for diastatic power, three 

located on chromosome 1H and one on chromosome 5H, collectively accounted for 26% of the 

phenotypic variation. Two QTLs were also identified for the increase in α-amylase, and the 5H 

chromosome telomere area assigned 25.6% of the main QTL’s phenotypic variations. Goddard et al. 

(2019) performed a QTL analysis and detected 12 QTLs on 4 chromosomes, 2H, 3H, 4H, and 7H, 

explaining 6.4 to 21.3% of the phenotypic variation for malting quality. Marquez-Cedillo et al. (2000) 
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analyzed a doubled haploid population of 140 lines, derived from the Harrington × Murex barley 

cross, aimed at characterizing the number, genomic positions, and effects of quantitative trait loci 

(QTLs) influencing malt quality. Using simple interval mapping and composite interval mapping, 

they integrated phenotypic data for malt quality traits, collected across eight environments, with a 

genetic linkage map containing 107 markers, ultimately identifying seventeen QTLs associated with 

seven key grain and malt quality characteristics. 

Cu et al. (2016) used a population of 320 doubled haploid lines developed from a cross between 

the barley cultivars Navigator and Admiral. They identified 63 QTLs associated with 10 malt quality 

traits across two distinct environments. Notably, three key traits, β-amylase activity, diastatic power, 

and apparent attenuation limit, each predominantly governed by a single major QTL, showed 

consistent effects in both environments. Five QTL were located for α-amylase, accounting for 4.02–

15.52% of the phenotypic variance. The co-localization of QTLs on chromosomes 1HS, 4HS, 7HS, 

and 7HL, controlling six malting quality characteristics (α-amylase, soluble protein, Kolbach index, 

free amino nitrogen, wort β-glucan, and viscosity) indicated genetic linkage or pleiotropic 

relationships among these traits (Han et al. 2004).  Han et al. (2004) identified seven QTLs controlling 

malting quality traits: one QTL for malt extract content, and two QTLs each for α-amylase activity, 

diastatic power, and β-glucan content. 

Several QTL mapping studies have dissected the genetic architecture of malting quality traits in 

barley. Von Korff et al. (2008) identified eight QTLs for Wort viscosity on chromosomes 1H, 2H, 

3H, 5H, and 6H (R² = 2-19.1%), while Wang et al. (2018) detected three peak viscosity QTLs on 

chromosomes 1H, 2H, and 5H, explaining 7.4%, 15.2%, and 8.5% of phenotypic variation, 

respectively. In a comprehensive mapping effort, Laidò et al. (2009) localized 19 QTLs for multiple 

malt quality traits, revealing that chromosome 1H contained QTLs for all examined traits, whereas 

chromosome 7H harbored none. Similarly, Kochevenko et al. (2018) reported 41 QTLs associated 

with malt quality traits alongside 57 yield-related and five seed quality QTLs, though only five malt 

quality QTLs exhibited major effects (R² > 10%), indicating predominantly polygenic inheritance of 

malting characteristics.  

Li et al. (2005) evaluated three malting quality traits over two growing seasons and identified 

two QTLs associated with elevated grain protein content on chromosomes 2 and 7, along with a 

putative QTL significantly linked to malt extract percentage. Zhou et al. (2012c) developed a high-

density genetic linkage map using 550 markers across 95 doubled haploid lines, derived from a cross 

between the Japanese cultivar Mikamo Golden and the North American malting barley cultivar, 

Harrington (MH-DHLs). They assessed seven malt quality traits, including, malt extract, total 
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nitrogen, soluble nitrogen, Kolbach index, diastatic power, Wort beta-glucan, and viscosity, across 

three distinct environments (location × year combinations). A total of 34 QTL were detected, 

accounting for 13.7-77.5% of the phenotypic variance. According to Emebiria et al. (2003), 

examining the grain protein as a covariate for malt extract and diastatic strength resulted in a two-

fold increase in the number of QTLs for each trait, largely due to increased detection power, and the 

identification of new QTLs occurred in the chromosomal regions where no significant QTL had 

previously been present.  

According to von Korff et al. (2008), 10 QTLs associated with grain protein content on 

chromosomes 1H, 2H, 4H, and 6H were identified. At five of these loci, alleles from exotic (non-

adapted) barley germplasm were linked to higher protein levels. The most influential QTL, QPro.S42-

1H.b, accounted for 7.9% of the genetic variance and increased protein content by an average of 

6.7%. Szűcs et al. (2009) constructed a linkage map of 2383 loci, using the Oregon Wolfe Barley 

(OWB) population, and detected 154 QTLs related to malt quality. The largest number of QTLs (21 

QTLs) were related to the grain protein content. Twenty QTLs were located for alpha-amylase 

activity and malt extract, 13 QTLs for the diastatic power, and only one QTL for the beta-amylase 

activity (at chromosome 4H). The largest number of QTLs was located on chromosome 5, and the 

smallest number was on chromosomes 3 and 6. Emebiri et al. (2003) identified seven QTLs for the 

grain protein concentration, which explained between 4.8% and 20.5% of the phenotypic variation. 

According to Walker et al. (2013), 32 QTLs for protein content and malt extract were identified on 

chromosomes 1H, 2H, 3H, 4H, and 7H in barley.  

This study aimed to (i) construct a consensus genetic map for barley to refine QTL positions and 

identify stable genomic regions associated with malting quality, and (ii) conduct meta-QTL analysis 

by integrating QTLs controlling malt quality-related traits from previous mapping studies. 

 

Materials and Methods 

To conduct the QTL meta-analysis, all published studies related to QTLs controlling malt quality 

traits in barley (Hordeum vulgare L.) were systematically searched in Web of Science, Scopus, 

PubMed, ScienceDirect, and Google Scholar. Studies were screened using strict inclusion criteria to 

ensure reliability and comparability among datasets. Only articles that reported well-defined genetic 

linkage maps and provided QTL positions in centimorgans were included. In addition, QTLs were 

considered eligible for analysis only if they met two statistical thresholds: a minimum LOD score of 

3.0 and a phenotypic variance explained (PVE) of at least 20%. Studies lacking essential statistical 

information, missing flanking markers, or using overlapping populations were excluded to avoid 
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redundancy and inconsistency. After applying these criteria, a final set of high-quality QTL studies 

was selected for integration. 

         

Extraction of QTL parameters 

For each retained study, QTL information was extracted in a standardized manner. Extracted 

parameters included chromosome number, peak position, confidence interval, flanking markers, LOD 

score, PVE, and the type and size of the mapping population. These datasets enabled the 

harmonization of QTL information obtained across different markers, populations, and experimental 

conditions. Each QTL was cataloged in preparation for projection onto a unified consensus map. 

 

Construction of the consensus genetic map 

A comprehensive consensus genetic map was constructed to serve as the reference framework for 

QTL projection. Two well-established barley linkage maps (Wenzel et al. 2006; Zhou et al. 2015) 

were used as primary references, supplemented by additional consensus maps (Wenzel et al. 2006; 

Khawani et al. 2016; Zhang et al. 2016) and 26 individual linkage maps. The unified map 

incorporated multiple marker systems, including AFLP, SSR, RFLP, RAPD, SAP, DArT, EST, 

CAPS, STS, RGA, IFLP, and SNP markers, enabling high genome coverage. Map construction and 

integration were carried out using BioMercator version 4.2 (Sosnowsky et al. 2012), which aligns 

markers, resolves conflict among maps, and produces a consistent chromosome-wise coordinate 

system suitable for cross-study QTL comparison. 

 

QTL projection and MQTL identification 

All extracted QTLs were projected onto the consensus genetic map using the QTL Projection module 

in BioMercator. This step standardized the positions of QTLs originating from diverse mapping 

studies. Meta-analysis was subsequently conducted using the approach of Veyrieras et al. (2007), 

which evaluates multiple statistical models based on Akaike Information Criterion, Bayesian 

Information Criterion, and the empirical Bayesian procedure to determine the optimal number of 

MQTLs per chromosome. For each identified MQTL, refined positions, sharply reduced confidence 

intervals, and consensus flanking markers were obtained. The resulting MQTLs represent stable, 

high-confidence genomic regions consistently associated with malt quality traits across multiple 

studies and environments. 
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Validation of MQTL regions 

To confirm the functional relevance of the identified MQTLs, a gene-based validation strategy was 

implemented. Genes located within each MQTL interval were retrieved from major genomic 

databases, including EnsemblPlants, GrainGenes, NCBI Gene, and BarleyMap. Functional 

annotation, gene ontology, and pathway analyses were performed to determine the biological 

relevance of each gene. Special attention was given to genes previously implicated in malt quality, 

such as those involved in starch metabolism, carbohydrate degradation pathways, and enzyme activity 

during malting. MQTLs containing functionally meaningful and previously reported malt-related 

genes were considered validated. This integrative approach ensured that the MQTLs detected in the 

present study represent robust genomic hotspots with strong biological and functional support. 

 

Identification of genes related to QTL 

The physical locations of genes in the chromosomal regions were obtained in the 2Mb intervals on 

either side of the peak position for identified QTL based on the Hordeum vulgar reference genome 

(MorexV3_pseudomolecules_assembly) using Ensembl plant database (Bolser et al. 2016). A circus 

plot was drawn by TBtools software (Chen et al. 2023) to show the location of QTLs on the barley 

chromosomes. 

 

Gene ontology enrichment analysis of identified genes  

The conversion of gene identifiers of barley was performed using a gprofiler tool based on the model 

plant Arabidopsis thaliana (https://biit.cs.ut.ee/gprofiler/gost). Gene ontology enrichment analysis, 

including biological process, cellular component, and molecular function MF of the identified genes, 

was performed using the DAVID database (https://david.ncifcrf.gov/) with a p-value ≤ 0.05. The 

result of the functional enrichment analysis of the genes was shown using the SRplot tool 

(https://www.bioinformatics.com.cn/en). 

 

Co-expression network of identified genes 

Co-expression networks for the identified genes were constructed using the GeneMANIA tool 

(https://genemania.org/) based on Arabidopsis thaliana ortholog information, with a false discovery 

rate (FDR) threshold of <0.05 to control for multiple testing errors. 

 

 

 

https://www.bioinformatics.com.cn/en
https://genemania.org/
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Prediction of related microRNA (miRNA) of genes 

Related miRNAs of the identified genes in QTLs were identified using the psRNATarget server (Dai 

et al. 2018) based on all published miRNAs of barley. The network of miRNAs and target genes was 

constructed by Cytoscape software (3.9.1).  

 

Results and Discussion  

Construction of a consensus linkage map 

In this meta-analysis, aimed at identifying MQTLs associated with malt quality in barley (Hordeum 

vulgare L.), data were compiled from multiple published studies. A total of 354 major QTLs linked 

to 12 key malt quality traits (Table 1), derived from diverse genetic populations, were extracted. 

Detailed QTL information, including mapping method, flanking markers, estimated position, 95% 

confidence interval (CI), LOD score, R² value, and other mapping parameters, was provided in 

Supplementary Table 1. 

To integrate these QTLs onto a common genomic framework, 42 individual linkage maps along 

with two published high-density consensus maps (Wenzl et al. 2006; Zhou et al. 2015) were used as 

references. Due to limited marker overlap between original studies and existing reference maps, 

BioMercator v4.2 (Sosnowski et al. 2012) was employed to construct a unified consensus map by 

merging published consensus maps (Wenzl et al. 2006; Zhang et al. 2017; Khahani et al. 2019) with 

these individual maps (Table 2). 

Of the 354 QTLs collected, 184 contained markers present on the consensus map and were 

therefore projected onto it (Figures 1-4). For the QTL projection, a 95% confidence interval was first 

calculated for each QTL using equations modeled for each mapping population (Darvasi and Soller 

1997; Guo et al. 2006). These equations include those for F2 and backcross mapping populations: CI 

= 530/(number of lines × R²), for RILs: CI = 163/(number of lines × R²), and for DH populations: CI 

= 287/(number of lines × R²). 

QTLs were then positioned using their reported midpoints, calculated confidence intervals, 

original LOD scores, and R² values. A chromosome-wise meta-analysis was then conducted using 

the two-step algorithm of Veyrieras et al. (2007), as implemented in BioMercator v4.2. To determine 

the optimal number of MQTLs, representing the most likely “true” underlying QTLs, the model with 

the lowest Akaike information criterion was selected, as it best balances model fit and complexity 

relative to the original QTL data. Full descriptions of the algorithms and statistical procedures used 

in this software have been detailed in prior publications (Arcade et al. 2004; Veyrieras et al. 2007; 
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Sosnowski et al. 2012). All input files prepared for BioMercator v4.2, including genetic maps and 

QTL data for each barley chromosome, are listed in Supplementary Table 2.  

 

   Table 1. Traits used in the QTL mapping for malt quality in previous studies. 

Trait Trait components 

Malt quality 

Malt extract, diastatic power, α-amylase, α-amylase activity, protein content, soluble proteins, 

soluble proteins to total proteins ratio, grain protein content, viscosity, Wort  viscosity, β-

glucan, Wort  β-glucan, β-glucanase activity 

 

 

QTL and MQTL distribution 

Among the 29 studies initially reviewed, 16 provided complete data necessary for the meta-QTL 

(MQTL) analysis. From these, a subset of 11 studies contributed a total of 184 QTLs, which were 

successfully projected onto the consensus genetic map for meta-analysis. The distribution of these 

QTLs across the barley genome varied by chromosome, ranging from 15 QTLs on chromosome 6H 

to 39 QTLs on chromosome 1H. Comprehensive details of the resulting MQTLs, including the 

number of underlying primary QTLs, consensus map positions, directions of allelic effect, 95% 

confidence intervals, and R² values, are summarized in the Supplementary Table 1.  

In this study, 35 MQTLs were located for 184 QTLs related to malt quality. Seven MQTLs were 

identified on chromosome 1, 6 MQTLs on chromosomes 3 and 5, and 4 MQTLs each on 

chromosomes 2, 4, 6, and 7. The number of QTLs and MQTLs for each chromosome is shown in 

Table 3 and Supplementary Table 3.  Du et al. (2024) identified 41 MQTLs for 349 QTLs related to 

barley quality traits. The number of these QTLs ranged from 19 (on chromosome 6) to 64 (on 

chromosome 5) (Du et al. 2024). In our study, the lowest number of QTLs was identified on 

chromosome 6, which was consistent with the results of Du et al. (2024). 

 

Overlapping QTLs in MQTLs 

The highest QTL overlap was observed in MQTL7.2, where 25 QTLs overlapped. Overlapping of 12 

QTLs also occurred in MQTL6.4, MQTL5.3, and MQTL4.1. No overlap was observed in MQTL5.6, 

MQTL6.1, and MQTL6.2. Only two overlapping QTLs were observed in each of MQTL3.1, 

MQTL3.2, MQTL3.3, MQTL3.6, and MQTL5.1. The highest QTL overlap was observed on 

chromosome 1 in MQTL1.3 (11 QTLs), on chromosome 2 in MQTL2.1 (11 QTLs), on chromosome 

3 in MQTL3.5 (9 QTLs), on chromosome 4 in MQTL4.1 (12 QTLs), on chromosome 5 in MQTL5.3 

(12 QTLs), on chromosome 6 in MQTL6.4 (12 QTLs), and on chromosome 7 in MQTL7.2 (25 QTLs) 

(Supplementary Table 2). In the study by Du et al. (2024), the highest number of QTL overlaps was 

observed in MQTL1H-2 (38 QTLs),  and the lowest overlap was observed in MQTL2H-7  (2 QTLs),  
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  Table 2. QTLs associated with barley malt in this study, collected from previously published papers. 

No. of 

Markers 

Population 

Size 
Parents Population Marker Reference 

1536 289 Vlamingh × Buloke DH SNP Walker et al., 2013 

181 180 VB9524 × ND1123112 DH AFLP, RFLP, SSR Emebiri et al., 2004 

106 140 Harrington × Morex DH AFLP 
Marquez-Cedillo et al., 

2000 

2383 93 
Wolfe Dominant × Wolfe 

Recessive 
DH 

SNP, DArT, SSR, RFLP, 

STS 
Szűcs et al., 2009 

~2500 150 TX9425 × Naso Nijo DH DArT, SSR, SNP Wang et al., 2018 

2346 320 Navigator × Admiral DH DArT, SNP Cu et al., 2016 

104 214 Nure × Tremois DH AFLP, RFLP, SSR, STS Laidò et al., 2009 

462 106 Triumph × Morex DH 
AFLP, DArT, SSR, 

SCSSR, SNP 
Elía et al., 2010 

384 188 Chevallier × NFC Tipple RIL SNP Goddard et al., 2019 

550 95 Harrington × Mikamo Golden DH EST, SNP, RFLP Zhou et al., 2012 

100 150 Steptoe × Morex DH RFLP Han et al., 2004 

98 301 Scarlett × ISR42-8 BC SSR von Korff et al., 2008 

400 181 Brenda × HS213 DH microsatellite markers Li et al., 2003 

1782 100 Sofiara × Victoriana DH SNP 
Kochevenko et al., 

2018 

270 180 VB9524 × ND1123112 DH 
AFLP, RFLP, SSR, 

RAPD 
Emebiri et al., 2003 

 

Table 2 continued 

No. of 

Markers 

Population 

Size 
Parents Population Marker Reference 

193 178 Baudin × AC Metcalfe DH AFLP, SSR Zhou et al., 2016 

2935 707 

Barque73 × CPI71284-48, Clipper × 

Sahara, Dayton × Zhepi2, Foster × 

CI4196, Steptoe × Morex, TX9425 × 

Franklin, Yerong × Franklin 

DH, RIL 
DArT, SSR, 

RFLP, STS 
Wenzl et al., 2006 

211 150 Clipper × Sahara 3771 DH 
AFLP, SSR, 

RFLP 
Karakousis et al., 2003 

206 250 Foster × CIho 4196 F8–9, RIL RFLP, SSR Horsley et al., 2006 

143 116 Fredrickson × Stander F4–6, RIL SSR Mesfin et al., 2003 

295 150 Steptoe × Morex DH 
RFLP, RAPD, 

SAP 
Kleinhofs et al., 1993 

520 92 TX9425 × Franklin DH 
DArT, AFLP, 

SSR 
Li et al., 2009 

133 133 Steptoe × Morex, Igri × Franka DH SSR Li et al., 2003 

251 206 
IGRI × FRANKA, VADA × H. 

spontaneum 
DH, F2/F3 RFLP Graner et al., 1991 

136 111 PB1 × PB11 DH RFLP 
Salvo-Garrido et al., 

2001 

325 86 Lina × H. spontaneum Canada Park DH SSR Ramsay et al., 2000 

1011 190 ZGMLEL × Schooner RILs SSR, SNP Fan et al., 2017 

8610 98 Pompadour × Biosaline-19 RIL DArT, SNP Dracatos et al., 2019 

3258 317 
Steptoe × Morex, Dom × Rec, Igri × 

Franka, L94 ×Vada 
DH, RIL 

RFLP, AFLP, 

SSR 
Marcel et al., 2007 

1962 122 Huadamai 6 × Huaai 11 DH SNP, SSR Ren et al., 2016 
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Table 2 continued 

No. of 

Markers 

Population 

Size 
Parents Population Marker Reference 

775 645 

Igri × Franka, Steptoe × Morex, 

OWBRec × OWBDom, Lina × 

Canada Park, L94 × Vada, SusPtrit 

× Vada 

DH SSR Varshney et al., 2007 

2948 93 Haruna Nijo × H602 DH 
EST, CAPS, STS, 

SNP, SSR 
Sato et al., 2009 

214 75 Foster × ND9712 × Zhedar DH 
RFLP, SSR, AFLP, 

RGA 
Dahleen et al., 2003 

830, 725 94 Oregon Wolfe Barley DH 
RFLP, RAPD, STS, 

IFLP, SSR, AFLP 
Costa et al., 2001 

195 81 Morex × Barke RIL SNP Han et al., 2016 

392 106 Badia × Kavir RIL 
SSR, ISSR, iPBS, 

Scot, IRAP, CAAT 
Makhtoum et al., 2021 

128 100 Badia × Comino F3 SSR, ISSR, iPBS 
Ghaffari-Moghadam et 

al., 2019 

819 100 
Maresi × 

Cam/B1/CI08887//CI05761 
RILs SNP, SSR Gudys et al., 2018 

241 156 Derkado × B83-12/21/5 DH AFLP, SSAP, SSR Ellis et al., 2002 

858 172 Yuyaoxiangtian Erleng × Franklin DH DArT, SSR Zhou et al., 2012 

128 100 Badia × Comino F3 SSR, ISSR, iPBS 
Ghaffari-Moghadam et 

al., 2019 

332 93 CM72 × Gairdner DH SSR, DArT Xue et al., 2009 

162 118 Nure × Tremois DH 
SSR, SNP, DArT, 

STS, CAPS, dCAPS 
Xue et al., 2017 

626 188 TX9425 × Naso Nijo DH SSR, DArT Xu et al., 2012 

1180 72 Barque-73 × CPI-71284-48 DH SSR, DArT, CAPS Shavrukov et al., 2010 

 

Table 2 continued 

No. of 

Markers 

Population 

Size 
Parents Population Marker Reference 

302 106 Badia × Kavir RILs 
SSR, ISSR, iPBS, 

Scot, CAAT, IRAP 
Makhtoum et al., 2021 

103 149, 146 
Steptoe × Morex, Harrington × 

TR306 
DH SSR 

Mano and Takeda., 

1997 

886 108 CM72 × Gairdner DH DArT, SSR Liu et al., 2017 

520 72 TX9425 ×Franklin DH DArT, AFLP, SSR Fan et al., 2015 

371 76 Scarlett × ISR42-8 DH 
SSR, DArT, gene-

specific marker 
Sayed., 2011 

77 167 Tadmor × Er/Apm RILs RFLP Diab et al., 2004 

371 301 Scarlett × ISR42-8 DH SSR, DArT 
Arifuzzaman et al., 

2014 

371 76 Scarlett × ISR42-8 DH 
SSR, DArT, gene-

specific marker 
Sayed et al., 2012 

2500, 524 177, 188 
Yerong × Franklin, TX9425 

×Naso Nijo 
DH SSR, DArT Huang et al., 2018 

191 94 Prisma × Apex R RILs AFLP Kindu et al., 2014 

650 94 OWBDOM × OWBREC DH 

EST, BR, GBM, 

GBS, RFLP, SSR, 

SNP 

Navakode et al., 2009 

 98 ISR42-8 × Scarlett301 DH SSR Saal et al., 2011 

104 146 
Lewis(CI15856) × 

Karl(CI15487)146 
RIL SSR Yang et al., 2004 

520, 524 92, 177 
TX9425 × Franklin, Yerong × 

Franklin 
DH SSR, AFLP, DArT Li et al., 2008 

604 156 Yerong × Franklin DH 
DArT, AFLP, 

microsatellite markers 
Xue et al., 2010 
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        Table 2 continued  

No. of 

Markers 

Population 

Size 
Parents Population Marker Reference 

2223 172 
YuYaoXiangTian Erleng × 

Franklin 
DH SSR, DArT Zhou et al., 2012 

858 126 
Franklin × 

YuYaoXiangTian Erleng 
DH DArT, SSR Broughton et al., 2015 

127 136 Nure × Tremois DH 
SSR, RAPD, RFLP, 

CAPS, AFLP, STS 
Francia et al., 2004 

94 91 Dicktoo × Morex DH SSR Skinner et al., 2006 

 

 

                            Table 3. Number of predicted QTLs and identified MQTLs for the  

                             malting quality of barley. 

Chromosome QTL (MQTL) 

1H 39 (7) 

2H 22 (4) 

3H 18 (6) 

4H 23 (4) 

5H 31 (6) 

6H 15 (4) 

7H 36 (4) 

Total 184 (35) 

 

 

MQTL5H-1 (2 QTLs), MQTL5H-5 (2 QTLs), and MQTL6H-3 (2 QTLs). Also, five QTLs did not 

overlap with any of the MQTLs.  

 

Major MQTLs  

Eleven MQTLs with R2 greater than 0.20 and less than 0.40 were identified in this study. In 

MQTL6.4, 12 QTLs controlling traits such as alpha-amylase, diastatic power, viscosity, beta-glucan, 

Wort β-glucan, and grain protein content were located, which explained 38% of the phenotypic 

variation. MQTL5.3 explained 32% of the phenotypic variation and included 1 QTL associated with 

malt extract, 5 QTLs associated with α-amylase, 3 QTLs associated with β-glucanase, 2 QTLs 

associated with protein content, and 1 QTL associated with viscosity. MQTL4.4 explained 31% of 

the phenotypic variation with 10 QTLs. Also, 31% of the phenotypic variation was explained in 

MQTL2.2. MQTL1.6 contained 10 QTLs controlling the protein content, malt extract, and β-glucan 

and explained 27% of the phenotypic variation. MQTL1.3 with 11 identified QTLs explained 26% 

of  the phenotypic variation.  MQTL2.4 with 6 QTLs  explained 24%,  and MQTL2.1 with 11 QTLs 
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Figure 1. Genomic localization of the QTLs on chromosomes 1H and 2H for malt quality of barley in the consensus map. 
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Figure 2. Genomic localization of the QTLs on chromosomes 3H and 4H for malt quality of barley in the consensus map. 
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Figure 3. Genomic localization of the QTLs on chromosomes 5H and 6H for malt quality of barley in the consensus map. 
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Figure 4. Genomic localization of the QTLs on chromosome 7H for malt quality of barley in the consensus map. 
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explained 23% of the phenotypic variation. MQTL2.3, MQTL3.4, and MQTL5.2 with 8, 5, and 8 

QTLs, respectively, showed an R2 value of 0.22. These QTLs controlled traits such as β-glucan, 

protein content, diastatic power, malt extract, and α-amylase (Supplementary Table 1).  

 

Mega MQTLs related to malt quality  

A total of 25 QTLs were located in MegaMQTL7.2, explaining 68% of the phenotypic variation. 

These MegaMQTLs included 1 QTL associated with malt extract, 4 QTLs associated with diastatic 

power, 4 QTLs associated with β-glucan, 4 QTLs associated with Wort β-glucan, 3 QTLs associated 

with viscosity, 5 QTLs associated with the protein content, and 3 QTLs associated with α-amylase. 

Some of these QTLs were detected in more than one MQTL. Diastatic power is the ability to 

hydrolyze starch into simple sugars during barley germination. Diastatic power is a key indicator of 

the combined activity of starch-degrading enzymes, including α-amylase, β-amylase, α-glucosidase, 

dextrinas, and is directly correlated with beer brewing performance and quality (Cu et al. 2016; 

Yousif and Evans 2020). Protein content is negatively correlated with malt extract and Wort β-glucan 

and increases the diastatic power (Yin et al. 2002; Sayre-Chavez et al. 2022). QDP-7Ha, QDp.StMo-

7H.3, QDp.nab-7H.1, and QDP-7Hb are the QTLs identified for the diastatic power in this MQTL.  

After MegaMQTL7.2, MegaMQTL6.3 exhibited the second-highest phenotypic variance 

explanation of 49%. This meta-QTL integrated 11 individual QTLs associated with five malt quality 

traits: diastatic power, α-amylase activity, viscosity, and β-glucan content (both grain and Wort). The 

co-localization of QTLs for these traits is consistent with the biochemical interdependence of barley 

malt quality parameters, which are collectively influenced by β-glucan levels, starch-degrading 

enzymes (α-amylase, β-amylase, and limit dextrinase), and total grain protein content (Yin et al. 

2002). The structural properties of β-glucans are important in increasing the viscosity of solutions 

and gel formation, and their concentration, molecular weight distribution, and structure are effective 

in gel formation (Marconi et al. 2014). In general, barley malt should have low levels of β-glucan, 

low viscosity, and high diastatic power to be used for beer production (Kunze 2004). Two QTLs, 

QBG-6Ha and QBG-6Hb, which had R2 of 0.138 and 0.172, respectively, and were detected within 

confidence limits of 24–66 and 28–62, were responsible for controlling β-glucan in this MegaMQTL.  

MegaMQTL4.1 and MegaMQTL3.5, each with an R2 of 0.44, are the effective MegaMQTLs 

identified in this study. These MegaMQTLs contained 12 and 9 QTLs, respectively. Most of the QTLs 

detected in these MegaMQTLs control protein-related characteristics. Soaking and germination 

regimes are designed to improve the quality and processing properties of malts to produce malts with 

high extract and soluble proteins and low viscosity. Given that barley is the main grain in malting, it 
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is suggested that these regimes produce malts with similar quality to the commercial barley malts 

(Almaguer et al. 2024). Malting barley not only improves processing properties, but also creates 

specific colors, flavors, and aromas. Different barley genotypes contribute to aroma, but flavor is 

most influenced by malting (Bettenhausen et al. 2018; Morrissy et al. 2023; Stewart et al. 2023).  

Controlling the amount of modification in the grain to achieve the recommended values for each 

malt quality index is the goal of the maltster during the malting process. The efficiency of malt 

performance during the brewing process is determined by malt quality indices such as extract, soluble 

proteins, and viscosity (Back et al. 2020). Malts with lower than recommended levels of extract and 

soluble proteins and higher viscosity are classified as low-modified malts that perform poorly in the 

brewing process. Also, malts with lower viscosity and higher than recommended levels have lower 

quality (such as head stability and flavor stability) that ultimately affect mouthfeel (Evans and 

Sheehan 2002; Krebs et al. 2020; Lehnhardt et al. 2021). QVIS-3H was the only QTL identified in 

MegaMQTL3.5 controlling viscosity at confidence levels of 102 and 146. This QTL was located in 

more than one MQTL.  

 

Physical locations of genes related to QTLs 

In total, 54 unique genes were identified in the 2Mb intervals upstream and downstream of the peak 

position of QTLs based on the reference barley genome. The location of QTLs on the barley 

chromosomes is presented in Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 5. The location of identified QTLs on the barley chromosomes. 
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Gene ontology enrichment of identified genes  

Gene ontology enrichment analysis illustrated that most identified genes were significantly enriched 

in biological processes, including monoatomic anion transport, tetracycline transmembrane transport, 

mRNA pseudouridine synthesis, xenobiotic transmembrane transport, and transmembrane transport 

(Figure 6). The results showed that significant cellular component (CC) terms were the GID (glucose-

induced degradation deficient) complex and cytoplasm. In addition, significant molecular function 

(MF) terms, included mechanosensitive monoatomic ion channel activity, tetracycline 

transmembrane transporter activity, transmembrane transporter activity, and pseudouridine synthase 

activity (Figure 6). The KEGG pathway enrichment analysis showed that some of the identified genes 

were significantly enriched in the circadian rhythm pathway.  

The result illustrated that the most significant biological process of the genes was monoatomic 

anion transport. The onion transporters are involved in signaling pathways leading to the adaptation 

of cells to environmental stresses (De Angeli et al. 2007). It was demonstrated that the regulation of 

the anion channels leads to regulating the pollen tube growth in plants, and it could be effective in 

quality traits (Stavert et al. 2020; Amo et al. 2024). The most significant molecular function was 

mechanosensitive ion channel activity. Mechanosensitive ion channels provide a molecular 

mechanism for transducing mechanical stimuli into intracellular signals (Basu et al. 2020; Kaur et al. 

2020). 

 

Co-expression network of genes 

The result showed that some genes, including AT1G13310, AT5G14020, MSL10, MSL9, MSL1, 

MSL2, MSL3, AT4G01600, AT4G40100, AT1G28200, AT5G13200, GEM, VAD1, AT1G34150, 

AT3G0695, AT1G71240, AT2G21720, AT3G18350, AT1G48840, and AT5G35400 were coexpressed 

with the identified genes (Figure 7). Some coexpressed genes appear as key players having a vital 

role in growth and quality traits, cell division and transport, and stress tolerance mechanisms. It was 

demonstrated that AT1G13310 was involved in potassium transport, cell division, and cell death in 

plants (Huang et al. 2019). However, some mechanosensitive genes were coexpressed with the 

identified genes (Figure 7). Plant mechanosensitive channels participate in osmoregulation, 

maintenance of plastid shape, pollen tube growth, stomatal closure, and stress tolerance mechanisms 

(Basu et al. 2020; Kaur et al. 2020). However, At1g28200 plays an important role in various abiotic 

and biotic stresses (Jiang et al. 2008). Therefore, the identified genes in a complex network with other 

co-expressed genes can be effective in the growth and development of barley. 
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Figure 6. Bar plot of gene ontology enrichment for the identified genes with a p-value of < 0.05. 

 

Prediction of regulatory microRNA of identified genes 

The result demonstrated that the 33 unique miRNAs regulated the identified genes in barley via 

inhibition and translational mechanisms. Some of these miRNAs, such as hvu-miR6192, hvu-

miR6184, hvu-miR6182, hvu-miR6176, hvu-miR6189, and hvu-miR6214, regulated more than one 

target gene (Figure 8).  

The result showed that the hvu-miR6192 has six target genes in barley. Some of these genes were 

important in quality traits and stress tolerance in plants. For example, the 6HG0598100 (AT3G15470) 

participates in grain-quality-related traits like grain width of rice (Roy et al. 2024). 6HG0597730 

(AT5G08330) was one of the target genes of hvu-miR6192. AT5G08330 is a member of the TCP 

(TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR) family of proteins 

that are involved in plant biology and immunity against infectious diseases (Park et al. 2023). It is 

shown that the hvu-miR6192 has various target genes in barley and could be an important regulator 

of genes that were related to stress tolerance (Sabouri et al. 2024). However, the hvu-miR6182 

regulates the defense-related target genes in barley under stress conditions (Jarošová et al. 2020). It 

was reported that the hvu-miR6184 regulates the important transcription factors that are pivotal 

regulators in growth, development, and responses to environmental stresses (Feng et al. 2024). In 

addition, the hvu-miR6189 is involved in the regulation of transcription factors. This suggests that 
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these miRNAs play an important role in plant growth and development, such as root growth and the 

development of leaf polarity (Li et al. 2022). 

The results illustrated that the identified genes related to QLTs were involved in the transport 

and stress tolerance mechanisms of the cell. These genes were co-expressed with important genes 

that are related to the growth and quality traits of barley. They were regulated by important miRNAs 

that regulate various target genes related to important mechanisms. Therefore, the findings of this 

study could be helpful to improve the quality characteristics of the barley plant. 

 

 

 

 

Figure 7. Co-expression network of candidate genes identified in barley meta-QTL regions, constructed using 

Arabidopsis thaliana orthologs with a false discovery rate (FDR) threshold of < 0.05. 
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Figure 8. Regulatory microRNA network targeting candidate genes in barley malt quality meta-QTLs. Interactions were 

predicted via psRNATarget analysis. 

 

Conclusion 

This comprehensive meta-QTL analysis successfully integrated 184 individual QTLs from 11 

contributing mapping studies (selected from 16 studies with complete data), consolidating them into 

35 high-confidence MQTLs distributed across all seven barley chromosomes. The meta-analysis 

approach substantially refined genomic regions associated with malt quality traits, with MQTL 

confidence intervals considerably reduced compared to original QTLs, thereby providing more 

precise targets for marker-assisted selection in barley breeding programs. 

The identification of MegaMQTL7.2, harboring 25 overlapping QTLs and explaining 68% of 

phenotypic variance for multiple malt quality characteristics, including diastatic power, β-glucan 
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content, viscosity, protein content, malt extract, and α-amylase activity, represents a genomic hotspot 

of exceptional breeding value. MegaMQTL6.3, explaining 49% of phenotypic variance and 

integrating 11 QTLs for diastatic power, α-amylase activity, viscosity, and β-glucan content, 

represents another significant breeding target. These mega-MQTLs, along with eleven major MQTLs 

exhibiting R² values exceeding 20%, constitute priority genomic regions for developing superior 

malting barley cultivars through marker-assisted selection and genomic selection strategies. 

Gene mining within MQTL intervals identified 54 unique candidate genes significantly enriched in 

critical biological processes, including monoatomic anion transport, transmembrane transport, and 

mRNA pseudouridine synthesis. The co-expression network analysis revealed functional 

relationships between candidate genes and key regulatory pathways controlling mechanosensitive ion 

channel activity, stress tolerance, and quality trait determination. Furthermore, the identification of 

33 unique miRNAs, particularly hvu-miR6192, hvu-miR6184, hvu-miR6182, hvu-miR6176, hvu-

miR6189, and hvu-miR6214, which regulate multiple target genes, provides insights into post-

transcriptional regulatory mechanisms governing malt quality traits. 

The 11 major MQTLs identified in this study, particularly MQTL6.4 (R²=38%), MQTL5.3 

(R²=32%), MQTL4.4 (R²=31%), and MQTL2.2 (R²=31%), offer immediate practical applications for 

marker-assisted breeding. These genomic regions control economically important traits such as α-

amylase activity, diastatic power, β-glucan content, grain protein content, malt extract, and wort 

viscosity—all critical determinants of malting and brewing quality as defined by the ideal commercial 

malt criteria of American Malting Barley Association (2014). 

The integration of QTL meta-analysis with functional genomics approaches employed in this 

study provides a robust framework for accelerating genetic improvement of barley malt quality. The 

identified MQTLs, candidate genes, and regulatory miRNAs represent valuable genomic resources 

that will facilitate the development of molecular markers for marker-assisted selection, enable 

targeted gene editing approaches, and support genomic selection strategies in modern barley breeding 

programs. Ultimately, these findings will contribute to the development of superior malting barley 

cultivars with enhanced quality characteristics tailored to meet the evolving demands of the global 

malting and brewing industries. 
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