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Abstract

Objective: Malt quality in barley is a complex quantitative trait governed by
multiple genes and influenced by environmental factors, making genetic
improvement challenging. The present study aimed to integrate QTL data from
multiple independent studies through meta-analysis to identify stable,
consensus genomic regions (MQTLSs) controlling key malt quality traits. The
ultimate goal was to provide reliable genomic targets for marker-assisted
selection to accelerate breeding programs for improved barley malt quality.

Methods: A comprehensive literature search was conducted across Web of
Science, Scopus, PubMed, ScienceDirect, and Google Scholar to identify all
published QTL studies related to barley malt quality. A high-density consensus
genetic map was constructed by integrating several well-established reference
maps. The unified map incorporated multiple marker systems, including
AFLP, SSR, RFLP, RAPD, SAP, DArT, EST, CAPS, STS, RGA, IFLP, and
SNP markers, ensuring comprehensive genome coverage. Individual QTLs
were projected onto the consensus map, and the optimal number of MQTLs
per chromosome was determined using the Akaike Information Criterion,
Bayesian Information Criterion (BIC), and empirical Bayesian procedures. To
validate the biological relevance of the identified MQTLSs, genes located within
2 Mb intervals flanking each MQTL peak position were retrieved from major
genomic databases, including EnsemblPlants, GrainGenes, NCBI Gene, and
BarleyMap.

Results: Through meta-analysis, the 184 individual QTLs were consolidated
into 35 MQTLs distributed across all seven barley chromosomes. The most
significant MQTL, designated MQTL7.2, harbored 25 overlapping QTLs and
explained 68% of the phenotypic variance. MQTL6.4 contained 12 QTLs
controlling alpha-amylase, diastatic power, viscosity, beta-glucan, Wort
beta-glucan, and grain protein content, explaining 38% of phenotypic variance.
Gene mining within MQTL intervals identified 54 unique candidate genes.
Gene ontology enrichment analysis revealed significant involvement in
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monoatomic anion transport, tetracycline transmembrane transport, mMRNA
pseudouridine synthesis, and transmembrane transporter activity. MicroRNA
prediction revealed 33 unique miRNASs regulating the identified genes, with
hvu-miR6192, hvu-miR6184, hvu-miR6182, hvu-miR6176, hvu-miR6189,
and hvu-miR6214 targeting multiple genes.

Conclusion: The identified MQTLs exhibited substantially reduced
confidence intervals compared to individual QTLs, providing more precise
genomic targets for breeding applications. Eleven major MQTLs with R2
values exceeding 20% represented high-priority genomic regions for
marker-assisted selection. The Mega-MQTL7.2, explaining 68% of
phenotypic variance and harboring QTLs for multiple malt quality parameters,
represents a particularly valuable breeding target. These findings will facilitate
marker-assisted selection strategies to accelerate genetic improvement of
barley for the malting and brewing industries, ultimately contributing to the
development of superior malting barley cultivars with enhanced quality
characteristics.
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Introduction
Barley (Hordeum vulgare L.) ranks as the fourth most important cereal crop globally after wheat, rice,
and maize, and serves as an excellent model for genetics and genomics research. This crop
demonstrates remarkable environmental plasticity across diverse agro-ecological zones due to its
extensive evolutionary adaptation (Zhou et al. 2009; Zhou et al. 2012a; Ghomi et al. 2021). Barley
is utilized primarily for animal feed, malting, brewing, and human consumption, with its distinctive
chemical composition and health-promoting dietary fibers attracting considerable attention from
agriculturists and nutritionists (Farag et al. 2022). The malting industry represents a particularly
significant economic sector, with global annual production capacity exceeding 22 million tons, over
90% of which derives from barley (Oliveira et al. 2012; Rani and Bhardwaj 2021). The malting
process involves controlled partial germination followed by drying, during which seed cell walls are
degraded and diastatic enzymes are activated to hydrolyze starch into fermentable sugars, producing
malt extract essential for brewing and distilling industries (Gubatz and Shewry 2011).
Meta-analysis, proposed by Glass (1976), uses a combination of various studies to create more

precise and meaningful forecasts. Extensive QTL mapping studies have generated substantial and
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often overlapping datasets for various agronomic traits in crops (Goffinet and Gerber 2000). QTL
meta-analysis systematically reviews and synthesizes these reported QTLSs to consolidate redundant
information and identify refined, high-confidence genomic regions termed ‘meta-QTLs’ (MQTLs),
which represent consensus chromosomal intervals with enhanced statistical power and reduced
confidence intervals (Arcade et al. 2004; Veyrieras et al. 2007).

The identified MQTLs have shorter confidence intervals than individual QTLs, which leads to a
deeper understanding of the genetic framework of the complex traits, and subsequently, a consensus
linkage map is generated that shows different QTLs using a simple scaling law (Kaur et al. 2023;
Kumari et al. 2024). The MQTL approach integrates QTL data from independent mapping
experiments to identify consistent chromosomal regions associated with quantitative traits such as
yield and yield-related components, while simultaneously enhancing statistical power and improving
precision in QTL detection (Goffinet and Gerber 2000; Arcade et al. 2004). Candidate genes
associated with these QTLs have been proposed in several studies (Khahani et al. 2019; Akbari et al.
2022). This integrative approach combining QTL mapping with gene annotation has been
successfully applied across a range of major crops, including wheat (Kumar et al. 2021; Saini et al.
2021, 2022; Tanin et al. 2022; Kumar et al. 2023), rice (Sandhu et al. 2021; Anilkumar et al. 2022;
Kumari et al. 2023), barley (Li et al. 2013; Zhang et al. 2017; Akbari et al. 2022), and maize (Kaur
et al. 2021; Makhtoum et al. 2021a; Makhtoum et al. 2021b; Sheoran et al. 2022; Makhtoum et al.
2022a; Makhtoum et al. 2022b; Wang et al. 2022; Gupta et al. 2023; Karnatam et al. 2023; Sethi et
al. 2023)

As mentioned above, malt barley is used in the food and beverage industries. To identify and
publish quality malt types, many quality traits are involved in detecting the proper barley grain
(Carvalho et al. 2021; Farag et al. 2022). Using a mapping population derived from the Baudin x AC
Metcalfe cross, 16 QTLs associated with seven malt quality traits were identified across four barley
chromosomes, with 1 to 4 QTLs detected per trait at LOD threshold values > 3.0. Zhou et al. (2016)
identified a major QTL in the telomeric region of chromosome 5H that pleiotropically controlled malt
extract yield, soluble protein content, free amino nitrogen, and a-amylase activity, explaining 25.6-
33.2% of the phenotypic variance for these traits. Additionally, four QTLs for diastatic power, three
located on chromosome 1H and one on chromosome 5H, collectively accounted for 26% of the
phenotypic variation. Two QTLs were also identified for the increase in a-amylase, and the 5H
chromosome telomere area assigned 25.6% of the main QTL’s phenotypic variations. Goddard et al.
(2019) performed a QTL analysis and detected 12 QTLs on 4 chromosomes, 2H, 3H, 4H, and 7H,
explaining 6.4 to 21.3% of the phenotypic variation for malting quality. Marquez-Cedillo et al. (2000)
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analyzed a doubled haploid population of 140 lines, derived from the Harrington x Murex barley
cross, aimed at characterizing the number, genomic positions, and effects of quantitative trait loci
(QTLs) influencing malt quality. Using simple interval mapping and composite interval mapping,
they integrated phenotypic data for malt quality traits, collected across eight environments, with a
genetic linkage map containing 107 markers, ultimately identifying seventeen QTLs associated with
seven key grain and malt quality characteristics.

Cu et al. (2016) used a population of 320 doubled haploid lines developed from a cross between
the barley cultivars Navigator and Admiral. They identified 63 QTLs associated with 10 malt quality
traits across two distinct environments. Notably, three key traits, f-amylase activity, diastatic power,
and apparent attenuation limit, each predominantly governed by a single major QTL, showed
consistent effects in both environments. Five QTL were located for a-amylase, accounting for 4.02—
15.52% of the phenotypic variance. The co-localization of QTLs on chromosomes 1HS, 4HS, 7HS,
and 7HL, controlling six malting quality characteristics (a-amylase, soluble protein, Kolbach index,
free amino nitrogen, wort B-glucan, and viscosity) indicated genetic linkage or pleiotropic
relationships among these traits (Han et al. 2004). Han et al. (2004) identified seven QTLs controlling
malting quality traits: one QTL for malt extract content, and two QTLs each for a-amylase activity,
diastatic power, and B-glucan content.

Several QTL mapping studies have dissected the genetic architecture of malting quality traits in
barley. Von Korff et al. (2008) identified eight QTLs for Wort viscosity on chromosomes 1H, 2H,
3H, 5H, and 6H (R2 = 2-19.1%), while Wang et al. (2018) detected three peak viscosity QTLSs on
chromosomes 1H, 2H, and 5H, explaining 7.4%, 15.2%, and 8.5% of phenotypic variation,
respectively. In a comprehensive mapping effort, Laido et al. (2009) localized 19 QTLs for multiple
malt quality traits, revealing that chromosome 1H contained QTLs for all examined traits, whereas
chromosome 7H harbored none. Similarly, Kochevenko et al. (2018) reported 41 QTLSs associated
with malt quality traits alongside 57 yield-related and five seed quality QTLs, though only five malt
quality QTLs exhibited major effects (Rz > 10%), indicating predominantly polygenic inheritance of
malting characteristics.

Li et al. (2005) evaluated three malting quality traits over two growing seasons and identified
two QTLs associated with elevated grain protein content on chromosomes 2 and 7, along with a
putative QTL significantly linked to malt extract percentage. Zhou et al. (2012c) developed a high-
density genetic linkage map using 550 markers across 95 doubled haploid lines, derived from a cross
between the Japanese cultivar Mikamo Golden and the North American malting barley cultivar,

Harrington (MH-DHLSs). They assessed seven malt quality traits, including, malt extract, total
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nitrogen, soluble nitrogen, Kolbach index, diastatic power, Wort beta-glucan, and viscosity, across
three distinct environments (location x year combinations). A total of 34 QTL were detected,
accounting for 13.7-77.5% of the phenotypic variance. According to Emebiria et al. (2003),
examining the grain protein as a covariate for malt extract and diastatic strength resulted in a two-
fold increase in the number of QTLs for each trait, largely due to increased detection power, and the
identification of new QTLs occurred in the chromosomal regions where no significant QTL had
previously been present.

According to von Korff et al. (2008), 10 QTLs associated with grain protein content on
chromosomes 1H, 2H, 4H, and 6H were identified. At five of these loci, alleles from exotic (non-
adapted) barley germplasm were linked to higher protein levels. The most influential QTL, QPro.542-
1H.b, accounted for 7.9% of the genetic variance and increased protein content by an average of
6.7%. Sziics et al. (2009) constructed a linkage map of 2383 loci, using the Oregon Wolfe Barley
(OWB) population, and detected 154 QTLs related to malt quality. The largest number of QTLs (21
QTLs) were related to the grain protein content. Twenty QTLs were located for alpha-amylase
activity and malt extract, 13 QTLs for the diastatic power, and only one QTL for the beta-amylase
activity (at chromosome 4H). The largest number of QTLs was located on chromosome 5, and the
smallest number was on chromosomes 3 and 6. Emebiri et al. (2003) identified seven QTLs for the
grain protein concentration, which explained between 4.8% and 20.5% of the phenotypic variation.
According to Walker et al. (2013), 32 QTLs for protein content and malt extract were identified on
chromosomes 1H, 2H, 3H, 4H, and 7H in barley.

This study aimed to (i) construct a consensus genetic map for barley to refine QTL positions and
identify stable genomic regions associated with malting quality, and (ii) conduct meta-QTL analysis

by integrating QTLs controlling malt quality-related traits from previous mapping studies.

Materials and Methods

To conduct the QTL meta-analysis, all published studies related to QTLs controlling malt quality
traits in barley (Hordeum vulgare L.) were systematically searched in Web of Science, Scopus,
PubMed, ScienceDirect, and Google Scholar. Studies were screened using strict inclusion criteria to
ensure reliability and comparability among datasets. Only articles that reported well-defined genetic
linkage maps and provided QTL positions in centimorgans were included. In addition, QTLs were
considered eligible for analysis only if they met two statistical thresholds: a minimum LOD score of
3.0 and a phenotypic variance explained (PVE) of at least 20%. Studies lacking essential statistical

information, missing flanking markers, or using overlapping populations were excluded to avoid
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redundancy and inconsistency. After applying these criteria, a final set of high-quality QTL studies

was selected for integration.

Extraction of QTL parameters

For each retained study, QTL information was extracted in a standardized manner. Extracted
parameters included chromosome number, peak position, confidence interval, flanking markers, LOD
score, PVE, and the type and size of the mapping population. These datasets enabled the
harmonization of QTL information obtained across different markers, populations, and experimental

conditions. Each QTL was cataloged in preparation for projection onto a unified consensus map.

Construction of the consensus genetic map

A comprehensive consensus genetic map was constructed to serve as the reference framework for
QTL projection. Two well-established barley linkage maps (Wenzel et al. 2006; Zhou et al. 2015)
were used as primary references, supplemented by additional consensus maps (Wenzel et al. 2006;
Khawani et al. 2016; Zhang et al. 2016) and 26 individual linkage maps. The unified map
incorporated multiple marker systems, including AFLP, SSR, RFLP, RAPD, SAP, DArT, EST,
CAPS, STS, RGA, IFLP, and SNP markers, enabling high genome coverage. Map construction and
integration were carried out using BioMercator version 4.2 (Sosnowsky et al. 2012), which aligns
markers, resolves conflict among maps, and produces a consistent chromosome-wise coordinate

system suitable for cross-study QTL comparison.

QTL projection and MQTL identification

All extracted QTLs were projected onto the consensus genetic map using the QTL Projection module
in BioMercator. This step standardized the positions of QTLs originating from diverse mapping
studies. Meta-analysis was subsequently conducted using the approach of Veyrieras et al. (2007),
which evaluates multiple statistical models based on Akaike Information Criterion, Bayesian
Information Criterion, and the empirical Bayesian procedure to determine the optimal number of
MQTLs per chromosome. For each identified MQTL, refined positions, sharply reduced confidence
intervals, and consensus flanking markers were obtained. The resulting MQTLSs represent stable,
high-confidence genomic regions consistently associated with malt quality traits across multiple

studies and environments.
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Validation of MQTL regions

To confirm the functional relevance of the identified MQTLSs, a gene-based validation strategy was
implemented. Genes located within each MQTL interval were retrieved from major genomic
databases, including EnsemblPlants, GrainGenes, NCBI Gene, and BarleyMap. Functional
annotation, gene ontology, and pathway analyses were performed to determine the biological
relevance of each gene. Special attention was given to genes previously implicated in malt quality,
such as those involved in starch metabolism, carbohydrate degradation pathways, and enzyme activity
during malting. MQTLs containing functionally meaningful and previously reported malt-related
genes were considered validated. This integrative approach ensured that the MQTLs detected in the
present study represent robust genomic hotspots with strong biological and functional support.

Identification of genes related to QTL

The physical locations of genes in the chromosomal regions were obtained in the 2Mb intervals on
either side of the peak position for identified QTL based on the Hordeum vulgar reference genome
(MorexV3_pseudomolecules_assembly) using Ensembl plant database (Bolser et al. 2016). A circus
plot was drawn by TBtools software (Chen et al. 2023) to show the location of QTLs on the barley

chromosomes.

Gene ontology enrichment analysis of identified genes

The conversion of gene identifiers of barley was performed using a gprofiler tool based on the model
plant Arabidopsis thaliana (https:/biit.cs.ut.ee/gprofiler/gost). Gene ontology enrichment analysis,
including biological process, cellular component, and molecular function MF of the identified genes,
was performed using the DAVID database (https://david.ncifcrf.gov/) with a p-value < 0.05. The
result of the functional enrichment analysis of the genes was shown using the SRplot tool

(https://www.bioinformatics.com.cn/en).

Co-expression network of identified genes
Co-expression networks for the identified genes were constructed using the GeneMANIA tool
(https://genemania.org/) based on Arabidopsis thaliana ortholog information, with a false discovery

rate (FDR) threshold of <0.05 to control for multiple testing errors.
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Prediction of related microRNA (miRNA) of genes

Related miRNAs of the identified genes in QTLs were identified using the psRNATarget server (Dai
et al. 2018) based on all published miRNAs of barley. The network of miRNAs and target genes was
constructed by Cytoscape software (3.9.1).

Results and Discussion

Construction of a consensus linkage map

In this meta-analysis, aimed at identifying MQTLs associated with malt quality in barley (Hordeum
vulgare L.), data were compiled from multiple published studies. A total of 354 major QTLs linked
to 12 key malt quality traits (Table 1), derived from diverse genetic populations, were extracted.
Detailed QTL information, including mapping method, flanking markers, estimated position, 95%
confidence interval (Cl), LOD score, R? value, and other mapping parameters, was provided in
Supplementary Table 1.

To integrate these QTLs onto a common genomic framework, 42 individual linkage maps along
with two published high-density consensus maps (Wenzl et al. 2006; Zhou et al. 2015) were used as
references. Due to limited marker overlap between original studies and existing reference maps,
BioMercator v4.2 (Sosnowski et al. 2012) was employed to construct a unified consensus map by
merging published consensus maps (Wenzl et al. 2006; Zhang et al. 2017; Khahani et al. 2019) with
these individual maps (Table 2).

Of the 354 QTLs collected, 184 contained markers present on the consensus map and were
therefore projected onto it (Figures 1-4). For the QTL projection, a 95% confidence interval was first
calculated for each QTL using equations modeled for each mapping population (Darvasi and Soller
1997; Guo et al. 2006). These equations include those for F2 and backcross mapping populations: Cl
= 530/(number of lines x R?), for RILs: Cl = 163/(number of lines x R2), and for DH populations: ClI
= 287/(number of lines x R?).

QTLs were then positioned using their reported midpoints, calculated confidence intervals,
original LOD scores, and R2 values. A chromosome-wise meta-analysis was then conducted using
the two-step algorithm of Veyrieras et al. (2007), as implemented in BioMercator v4.2. To determine
the optimal number of MQTLSs, representing the most likely “true” underlying QTLs, the model with
the lowest Akaike information criterion was selected, as it best balances model fit and complexity
relative to the original QTL data. Full descriptions of the algorithms and statistical procedures used

in this software have been detailed in prior publications (Arcade et al. 2004; Veyrieras et al. 2007,
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Sosnowski et al. 2012). All input files prepared for BioMercator v4.2, including genetic maps and

QTL data for each barley chromosome, are listed in Supplementary Table 2.

Table 1. Traits used in the QTL mapping for malt quality in previous studies.
Trait Trait components

Malt extract, diastatic power, a-amylase, a-amylase activity, protein content, soluble proteins,
Malt quality soluble proteins to total proteins ratio, grain protein content, viscosity, Wort viscosity, [3-
glucan, Wort B-glucan, B-glucanase activity

QTL and MQTL distribution

Among the 29 studies initially reviewed, 16 provided complete data necessary for the meta-QTL
(MQTL) analysis. From these, a subset of 11 studies contributed a total of 184 QTLs, which were
successfully projected onto the consensus genetic map for meta-analysis. The distribution of these
QTLs across the barley genome varied by chromosome, ranging from 15 QTLs on chromosome 6H
to 39 QTLs on chromosome 1H. Comprehensive details of the resulting MQTLS, including the
number of underlying primary QTLs, consensus map positions, directions of allelic effect, 95%
confidence intervals, and R2 values, are summarized in the Supplementary Table 1.

In this study, 35 MQTLs were located for 184 QTLs related to malt quality. Seven MQTLs were
identified on chromosome 1, 6 MQTLs on chromosomes 3 and 5, and 4 MQTLs each on
chromosomes 2, 4, 6, and 7. The number of QTLs and MQTLs for each chromosome is shown in
Table 3 and Supplementary Table 3. Du et al. (2024) identified 41 MQTLs for 349 QTLSs related to
barley quality traits. The number of these QTLs ranged from 19 (on chromosome 6) to 64 (on
chromosome 5) (Du et al. 2024). In our study, the lowest number of QTLs was identified on

chromosome 6, which was consistent with the results of Du et al. (2024).

Overlapping QTLs in MQTLs

The highest QTL overlap was observed in MQTL7.2, where 25 QTLs overlapped. Overlapping of 12
QTLs also occurred in MQTL6.4, MQTLS5.3, and MQTL4.1. No overlap was observed in MQTL5.6,
MQTL6.1, and MQTL6.2. Only two overlapping QTLs were observed in each of MQTL3.1,
MQTL3.2, MQTL3.3, MQTL3.6, and MQTL5.1. The highest QTL overlap was observed on
chromosome 1 in MQTL1.3 (11 QTLs), on chromosome 2 in MQTL2.1 (11 QTLS), on chromosome
3in MQTL3.5 (9 QTLs), on chromosome 4 in MQTL4.1 (12 QTLs), on chromosome 5 in MQTL5.3
(12 QTLs), on chromosome 6 in MQTL6.4 (12 QTLs), and on chromosome 7 in MQTL7.2 (25 QTLS)
(Supplementary Table 2). In the study by Du et al. (2024), the highest number of QTL overlaps was
observed in MQTL1H-2 (38 QTLs), and the lowest overlap was observed in MQTL2H-7 (2 QTLS),
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Table 2. QTLs associated with barley malt in this study, collected from previously published papers.

Reference Marker Population Parents Popqlatlon No. of
Size Markers
Walker et al., 2013 SNP DH Vlamingh x Buloke 289 1536
Emebiri et al., 2004 AFLP, RFLP, SSR DH VB9524 x ND1123112 180 181
Marquez-z%%(yllo etal., AFLP DH Harrington x Morex 140 106
B SNP, DArT, SSR, RFLP, Wolfe Dominant x Wolfe
Sziics et al., 2009 STS DH Recessive 93 2383
Wang et al., 2018 DArT, SSR, SNP DH TX9425 x Naso Nijo 150 ~2500
Cuetal., 2016 DArT, SNP DH Navigator x Admiral 320 2346
Laido et al., 2009 AFLP, RFLP, SSR, STS DH Nure x Tremois 214 104
. AFLP, DArT, SSR, .
Elia et al., 2010 SCSSR. SNP DH Triumph x Morex 106 462
Goddard et al., 2019 SNP RIL Chevallier x NFC Tipple 188 384
Zhou et al., 2012 EST, SNP, RFLP DH Harrington x Mikamo Golden 95 550
Han et al., 2004 RFLP DH Steptoe x Morex 150 100
von Korff et al., 2008 SSR BC Scarlett x ISR42-8 301 98
Lietal., 2003 microsatellite markers DH Brenda x HS213 181 400
Koche\;%nlléo etal. SNP DH Sofiara x Victoriana 100 1782
Emebiri et al., 2003 ArLR R SSR, DH VB9524 x ND1123112 180 270
Table 2 continued
Reference Marker Population Parents Popu_latlon No. of
Size Markers
Zhou et al., 2016 AFLP, SSR DH Baudin x AC Metcalfe 178 193
Barque73 x CP171284-48, Clipper x
DArT, SSR, Sahara, Dayton x Zhepi2, Foster x
Wenzl et al., 2006 RFLP, STS DH,RIL 14196, Steptoe x Morex, TX9425 x 707 2935
Franklin, Yerong x Franklin
Karakousis et al., 2003 AF'F-{F;'LSI;SR’ DH Clipper x Sahara 3771 150 211
Horsley et al., 2006 RFLP, SSR F8-9, RIL Foster x Clho 4196 250 206
Mesfin et al., 2003 SSR F4-6, RIL Fredrickson x Stander 116 143
Kleinhofs et al., 1993 RF"F;' ARPAPD' DH Steptoe x Morex 150 205
Li et al., 2009 DAﬂS—’égFLP’ DH TX9425 x Franklin 92 520
Lietal., 2003 SSR DH Steptoe x Morex, Igri x Franka 133 133
Graner et al., 1991 RFLP DH, FalFs IGRI x FRANKA, VADA x H. 206 251
spontaneum
Salvo-Garrido et al., RFLP DH PB1 x PB11 111 136
2001
Ramsay et al., 2000 SSR DH Lina x H. spontaneum Canada Park 86 325
Fanetal., 2017 SSR, SNP RILs ZGMLEL x Schooner 190 1011
Dracatos et al., 2019 DArT, SNP RIL Pompadour x Biosaline-19 98 8610
RFLP, AFLP, Steptoe x Morex, Dom x Rec, Igri x
Marcel et al., 2007 SSR DH, RIL Franka, L94 xVada 317 3258
Ren et al., 2016 SNP, SSR DH Huadamai 6 x Huaai 11 122 1962
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Table 2 continued
Reference Marker Population Parents Popu_latlon No. of
Size Markers
Igri x Franka, Steptoe x Morex,
OWBRec x OWBDom, Lina x
Varshney et al., 2007 SSR DH Canada Park, L94 x Vada, SusPtrit 645 775
x Vada
EST, CAPS, STS, ..
Sato et al., 2009 SNP, SSR DH Haruna Nijo x H602 93 2948
Dahleen et al., 2003 RFLP, EZF,{A AFLP, DH Foster x ND9712 x Zhedar 75 214
RFLP, RAPD, STS,
Costa et al., 2001 IFLP. SSR, AFLP DH Oregon Wolfe Barley 94 830, 725
Han et al., 2016 SNP RIL Morex x Barke 81 195
SSR, ISSR, iPBS, . .
Makhtoum et al., 2021 Scot, IRAP, CAAT RIL Badia x Kavir 106 392
Ghaffari-Moghadam et SSR, ISSR, iPBS F3 Badia x Comino 100 128
al., 2019
Maresi x
Gudys et al., 2018 SNP, SSR RILs Cam/B1/C108887//CIO5761. 100 819
Ellis et al., 2002 AFLP, SSAP, SSR DH Derkado x B83-12/21/5 156 241
Zhou et al., 2012 DArT, SSR DH Yuyaoxiangtian Erleng x Franklin 172 858
Ghaffar Mognadam et SSR, ISSR, iPBS F3 Badia x Comino 100 128
Xue et al., 2009 SSR, DAIT DH CM72 x Gairdner 93 332
SSR, SNP, DAIT, .
Xue etal., 2017 STS, CAPS. dCAPS DH Nure x Tremois 118 162
Xuetal., 2012 SSR, DAIT DH TX9425 x Naso Nijo 188 626
Shavrukov et al., 2010 SSR, DArT, CAPS DH Barque-73 x CP1-71284-48 72 1180
Table 2 continued
Reference Marker Population Parents Popu_latlon No. of
Size Markers
SSR, ISSR, iPBS, . .
Makhtoum et al., 2021 Scot, CAAT, IRAP RILs Badia x Kavir 106 302
Mano and Takeda., Steptoe x Morex, Harrington x
1997 SSR DH TR306 149, 146 103
Liuetal., 2017 DArT, SSR DH CM72 x Gairdner 108 886
Fan et al., 2015 DArT, AFLP, SSR DH TX9425 xFranklin 72 520
Sayed., 2011 SSR, DArT, gene- DH Scarlett x ISR42-8 76 371
specific marker
Diab et al., 2004 RFLP RILs Tadmor x Er/Apm 167 77
A”fuzzz"‘(;‘li” etal. SSR, DAIT DH Scarlett x ISR42-8 301 371
Sayed et al., 2012 SSR, DAIT, gene- DH Scarlett x ISR42-8 76 371
specific marker
Huang et al., 2018 SSR, DAIT DH Yerong x Franklin, TX9425 177,188 2500, 524
xNaso Nijo
Kindu et al., 2014 AFLP RILs Prisma x Apex R 94 191
EST, BR, GBM,
Navakode et al., 2009 GBS, RFLP, SSR, DH OWBDOM x OWBREC 94 650
SNP
Saal et al., 2011 SSR DH ISR42-8 x Scarlett301 98
Lewis(C115856) x
Yang et al., 2004 SSR RIL Karl(CI15487)146 146 104
Li et al., 2008 SSR, AFLP, DAIT DH TX9425 x E;ZL‘::I':Q Yerong x 92,177 520, 524
Xue et al., 2010 DArT, AFLP, DH Yerong x Franklin 156 604

microsatellite markers
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Table 2 continued

Reference Marker Population Parents Popqlatlon No. of
Size Markers
Zhou et al., 2012 SSR, DAIT DH YuYaoXiangTian Erleng x 172 2223
Franklin
Franklin x
Broughton et al., 2015 DArT, SSR DH YuYaoXiangTian Erleng 126 858
. SSR, RAPD, RFLP, .
Francia et al., 2004 CAPS, AFLP, STS DH Nure x Tremois 136 127
Skinner et al., 2006 SSR DH Dicktoo x Morex 91 94

Table 3. Number of predicted QTLs and identified MQTLs for the
malting quality of barley.

Chromosome QTL (MQTL)
1H 39(7)
2H 22 (4)
3H 18 (6)
4H 23 (4)
5H 31 (6)
6H 15 (4)
7H 36 (4)
Total 184 (35)

MQTL5H-1 (2 QTLs), MQTL5H-5 (2 QTLs), and MQTL6H-3 (2 QTLs). Also, five QTLs did not
overlap with any of the MQTLs.

Major MQTLs

Eleven MQTLs with R? greater than 0.20 and less than 0.40 were identified in this study. In
MQTL6.4, 12 QTLs controlling traits such as alpha-amylase, diastatic power, viscosity, beta-glucan,
Wort B-glucan, and grain protein content were located, which explained 38% of the phenotypic
variation. MQTL5.3 explained 32% of the phenotypic variation and included 1 QTL associated with
malt extract, 5 QTLs associated with a-amylase, 3 QTLs associated with B-glucanase, 2 QTLsS
associated with protein content, and 1 QTL associated with viscosity. MQTL4.4 explained 31% of
the phenotypic variation with 10 QTLs. Also, 31% of the phenotypic variation was explained in
MQTL2.2. MQTL1.6 contained 10 QTLs controlling the protein content, malt extract, and -glucan
and explained 27% of the phenotypic variation. MQTL1.3 with 11 identified QTLs explained 26%
of the phenotypic variation. MQTL2.4 with 6 QTLs explained 24%, and MQTL2.1 with 11 QTLs
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Figure 1. Genomic localization of the QTLs on chromosomes 1H and 2H for malt quality of barley in the consensus map.
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Figure 2. Genomic localization of the QTLs on chromosomes 3H and 4H for malt quality of barley in the consensus map.
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Figure 4. Genomic localization of the QTLs on chromosome 7H for malt quality of barley in the consensus map.
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explained 23% of the phenotypic variation. MQTL2.3, MQTL3.4, and MQTL5.2 with 8, 5, and 8
QTLs, respectively, showed an R? value of 0.22. These QTLs controlled traits such as B-glucan,

protein content, diastatic power, malt extract, and a-amylase (Supplementary Table 1).

Mega MQTLs related to malt quality
A total of 25 QTLs were located in MegaMQTL7.2, explaining 68% of the phenotypic variation.
These MegaMQTLs included 1 QTL associated with malt extract, 4 QTLs associated with diastatic
power, 4 QTLs associated with B-glucan, 4 QTLs associated with Wort B-glucan, 3 QTLs associated
with viscosity, 5 QTLs associated with the protein content, and 3 QTLs associated with a-amylase.
Some of these QTLs were detected in more than one MQTL. Diastatic power is the ability to
hydrolyze starch into simple sugars during barley germination. Diastatic power is a key indicator of
the combined activity of starch-degrading enzymes, including a-amylase, B-amylase, a-glucosidase,
dextrinas, and is directly correlated with beer brewing performance and quality (Cu et al. 2016;
Yousif and Evans 2020). Protein content is negatively correlated with malt extract and Wort 3-glucan
and increases the diastatic power (Yin et al. 2002; Sayre-Chavez et al. 2022). QDP-7Ha, QDp.StMo-
7H.3, QDp.nab-7H.1, and QDP-7Hb are the QTLs identified for the diastatic power in this MQTL.
After MegaMQTL7.2, MegaMQTL6.3 exhibited the second-highest phenotypic variance
explanation of 49%. This meta-QTL integrated 11 individual QTLs associated with five malt quality
traits: diastatic power, a-amylase activity, viscosity, and $-glucan content (both grain and Wort). The
co-localization of QTLs for these traits is consistent with the biochemical interdependence of barley
malt quality parameters, which are collectively influenced by B-glucan levels, starch-degrading
enzymes (a-amylase, B-amylase, and limit dextrinase), and total grain protein content (Yin et al.
2002). The structural properties of B-glucans are important in increasing the viscosity of solutions
and gel formation, and their concentration, molecular weight distribution, and structure are effective
in gel formation (Marconi et al. 2014). In general, barley malt should have low levels of B-glucan,
low viscosity, and high diastatic power to be used for beer production (Kunze 2004). Two QTLs,
QBG-6Ha and QBG-6Hb, which had R? of 0.138 and 0.172, respectively, and were detected within
confidence limits of 24-66 and 28—62, were responsible for controlling f-glucan in this MegaMQTL.
MegaMQTL4.1 and MegaMQTL3.5, each with an R? of 0.44, are the effective MegaMQTLs
identified in this study. These MegaMQTLs contained 12 and 9 QTLSs, respectively. Most of the QTLs
detected in these MegaMQTLs control protein-related characteristics. Soaking and germination
regimes are designed to improve the quality and processing properties of malts to produce malts with

high extract and soluble proteins and low viscosity. Given that barley is the main grain in malting, it
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IS suggested that these regimes produce malts with similar quality to the commercial barley malts
(Almaguer et al. 2024). Malting barley not only improves processing properties, but also creates
specific colors, flavors, and aromas. Different barley genotypes contribute to aroma, but flavor is
most influenced by malting (Bettenhausen et al. 2018; Morrissy et al. 2023; Stewart et al. 2023).

Controlling the amount of modification in the grain to achieve the recommended values for each
malt quality index is the goal of the maltster during the malting process. The efficiency of malt
performance during the brewing process is determined by malt quality indices such as extract, soluble
proteins, and viscosity (Back et al. 2020). Malts with lower than recommended levels of extract and
soluble proteins and higher viscosity are classified as low-modified malts that perform poorly in the
brewing process. Also, malts with lower viscosity and higher than recommended levels have lower
quality (such as head stability and flavor stability) that ultimately affect mouthfeel (Evans and
Sheehan 2002; Krebs et al. 2020; Lehnhardt et al. 2021). QVIS-3H was the only QTL identified in
MegaMQTL3.5 controlling viscosity at confidence levels of 102 and 146. This QTL was located in
more than one MQTL.

Physical locations of genes related to QTLs
In total, 54 unique genes were identified in the 2Mb intervals upstream and downstream of the peak
position of QTLs based on the reference barley genome. The location of QTLs on the barley

chromosomes is presented in Figure 5.

Figure 5. The location of identified QTLs on the barley chromosomes.
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Gene ontology enrichment of identified genes

Gene ontology enrichment analysis illustrated that most identified genes were significantly enriched
in biological processes, including monoatomic anion transport, tetracycline transmembrane transport,
MRNA pseudouridine synthesis, xenobiotic transmembrane transport, and transmembrane transport
(Figure 6). The results showed that significant cellular component (CC) terms were the GID (glucose-
induced degradation deficient) complex and cytoplasm. In addition, significant molecular function
(MF) terms, included mechanosensitive monoatomic ion channel activity, tetracycline
transmembrane transporter activity, transmembrane transporter activity, and pseudouridine synthase
activity (Figure 6). The KEGG pathway enrichment analysis showed that some of the identified genes
were significantly enriched in the circadian rhythm pathway.

The result illustrated that the most significant biological process of the genes was monoatomic
anion transport. The onion transporters are involved in signaling pathways leading to the adaptation
of cells to environmental stresses (De Angeli et al. 2007). It was demonstrated that the regulation of
the anion channels leads to regulating the pollen tube growth in plants, and it could be effective in
quality traits (Stavert et al. 2020; Amo et al. 2024). The most significant molecular function was
mechanosensitive ion channel activity. Mechanosensitive ion channels provide a molecular
mechanism for transducing mechanical stimuli into intracellular signals (Basu et al. 2020; Kaur et al.
2020).

Co-expression network of genes

The result showed that some genes, including AT1G13310, AT5G14020, MSL10, MSL9, MSL1,
MSL2, MSL3, AT4G01600, AT4G40100, AT1G28200, AT5G13200, GEM, VAD1, AT1G34150,
AT3G0695, AT1G71240, AT2G21720, AT3G18350, AT1G48840, and AT5G35400 were coexpressed
with the identified genes (Figure 7). Some coexpressed genes appear as key players having a vital
role in growth and quality traits, cell division and transport, and stress tolerance mechanisms. It was
demonstrated that AT1G13310 was involved in potassium transport, cell division, and cell death in
plants (Huang et al. 2019). However, some mechanosensitive genes were coexpressed with the
identified genes (Figure 7). Plant mechanosensitive channels participate in osmoregulation,
maintenance of plastid shape, pollen tube growth, stomatal closure, and stress tolerance mechanisms
(Basu et al. 2020; Kaur et al. 2020). However, At1g28200 plays an important role in various abiotic
and biotic stresses (Jiang et al. 2008). Therefore, the identified genes in a complex network with other

co-expressed genes can be effective in the growth and development of barley.
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Figure 6. Bar plot of gene ontology enrichment for the identified genes with a p-value of < 0.05.

Prediction of regulatory microRNA of identified genes

The result demonstrated that the 33 unique miRNAs regulated the identified genes in barley via
inhibition and translational mechanisms. Some of these miRNAs, such as hvu-miR6192, hvu-
miR6184, hvu-miR6182, hvu-miR6176, hvu-miR6189, and hvu-miR6214, regulated more than one
target gene (Figure 8).

The result showed that the hvu-miR6192 has six target genes in barley. Some of these genes were
important in quality traits and stress tolerance in plants. For example, the 6HG0598100 (AT3G15470)
participates in grain-quality-related traits like grain width of rice (Roy et al. 2024). 6HG0597730
(AT5G08330) was one of the target genes of hvu-miR6192. AT5G08330 is a member of the TCP
(TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR) family of proteins
that are involved in plant biology and immunity against infectious diseases (Park et al. 2023). It is
shown that the hvu-miR6192 has various target genes in barley and could be an important regulator
of genes that were related to stress tolerance (Sabouri et al. 2024). However, the hvu-miR6182
regulates the defense-related target genes in barley under stress conditions (JaroSova et al. 2020). It
was reported that the hvu-miR6184 regulates the important transcription factors that are pivotal
regulators in growth, development, and responses to environmental stresses (Feng et al. 2024). In
addition, the hvu-miR6189 is involved in the regulation of transcription factors. This suggests that
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these miRNAs play an important role in plant growth and development, such as root growth and the
development of leaf polarity (Li et al. 2022).

The results illustrated that the identified genes related to QLTs were involved in the transport
and stress tolerance mechanisms of the cell. These genes were co-expressed with important genes
that are related to the growth and quality traits of barley. They were regulated by important miRNAs
that regulate various target genes related to important mechanisms. Therefore, the findings of this

study could be helpful to improve the quality characteristics of the barley plant.

Figure 7. Co-expression network of candidate genes identified in barley meta-QTL regions, constructed using
Arabidopsis thaliana orthologs with a false discovery rate (FDR) threshold of < 0.05.
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Figure 8. Regulatory microRNA network targeting candidate genes in barley malt quality meta-QTLs. Interactions were
predicted via psRNATarget analysis.

Conclusion

This comprehensive meta-QTL analysis successfully integrated 184 individual QTLs from 11
contributing mapping studies (selected from 16 studies with complete data), consolidating them into
35 high-confidence MQTLs distributed across all seven barley chromosomes. The meta-analysis
approach substantially refined genomic regions associated with malt quality traits, with MQTL
confidence intervals considerably reduced compared to original QTLsS, thereby providing more
precise targets for marker-assisted selection in barley breeding programs.

The identification of MegaMQTL7.2, harboring 25 overlapping QTLs and explaining 68% of

phenotypic variance for multiple malt quality characteristics, including diastatic power, f-glucan
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content, viscosity, protein content, malt extract, and a-amylase activity, represents a genomic hotspot
of exceptional breeding value. MegaMQTLG6.3, explaining 49% of phenotypic variance and
integrating 11 QTLs for diastatic power, a-amylase activity, viscosity, and B-glucan content,
represents another significant breeding target. These mega-MQTLs, along with eleven major MQTLSs
exhibiting R? values exceeding 20%, constitute priority genomic regions for developing superior
malting barley cultivars through marker-assisted selection and genomic selection strategies.

Gene mining within MQTL intervals identified 54 unique candidate genes significantly enriched in
critical biological processes, including monoatomic anion transport, transmembrane transport, and
MRNA pseudouridine synthesis. The co-expression network analysis revealed functional
relationships between candidate genes and key regulatory pathways controlling mechanosensitive ion
channel activity, stress tolerance, and quality trait determination. Furthermore, the identification of
33 unique miRNAs, particularly hvu-miR6192, hvu-miR6184, hvu-miR6182, hvu-miR6176, hvu-
miR6189, and hvu-miR6214, which regulate multiple target genes, provides insights into post-
transcriptional regulatory mechanisms governing malt quality traits.

The 11 major MQTLs identified in this study, particularly MQTL6.4 (R2=38%), MQTL5.3
(R2=32%), MQTL4.4 (R2=31%), and MQTL2.2 (R2=31%), offer immediate practical applications for
marker-assisted breeding. These genomic regions control economically important traits such as a-
amylase activity, diastatic power, B-glucan content, grain protein content, malt extract, and wort
viscosity—all critical determinants of malting and brewing quality as defined by the ideal commercial
malt criteria of American Malting Barley Association (2014).

The integration of QTL meta-analysis with functional genomics approaches employed in this
study provides a robust framework for accelerating genetic improvement of barley malt quality. The
identified MQTLs, candidate genes, and regulatory miRNASs represent valuable genomic resources
that will facilitate the development of molecular markers for marker-assisted selection, enable
targeted gene editing approaches, and support genomic selection strategies in modern barley breeding
programs. Ultimately, these findings will contribute to the development of superior malting barley
cultivars with enhanced quality characteristics tailored to meet the evolving demands of the global

malting and brewing industries.
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