Abidi A, Soltani A, Zeinali E. 2024. Identifying plant traits to increase wheat yield under irrigated conditions. Heliyon. 10(2024). https://doi.org/10.1016/j.heliyon.2024.e31734
Abidi A, Soltani A, Zeinali E. 2025. Parameterization and evaluation of SSM-iCrop model for predicting growth and development, grain yield, accumulation and concentration of nitrogen in wheat. Cereal Res. 14(4): 379-395 (In Persian with English abstract). https://doi.org/10.22124/CR.2025.28834.1842
Aggarwal PK, Hebbar KB, Venugopalan MV, Rani S, Bal A, Biswal A, Wani SP. 2008. Quantification of yield gaps in rain-fed rice, wheat, cotton and mustard in India. Report no. 43. Monograph. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India.
Anderson WK. 2010. Closing the gap between actual and potential yield of rainfed wheat. The impacts of environment, management and cultivar. Field Crops Res. 116: 14-22. https://doi.org/10.1016/j.fcr.2009.11.016
Araus JL, Slafer GA, Reynolds MP, Royo C. 2002. Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot. 89: 925-940. https://doi.org/10.1093/aob/mcf049
Battisti R, Sentelhas PC, Boote KJ, Câmara GMDS, Faria JRB, Basso CJ. 2017. Assessment of soybean yield with altered water-related genetic improvement traits under climate change in Southern Brazil. Eur J Agron. 83: 1-14. http://doi.org/10.1016/j.eja.2016.11.004
Borras-Gelonch G, Rebetzke GJ, Richards RA, Romagosa I. 2011. Genetic control of duration of pre-anthesis phases in wheat (Triticum aestivum L.) and relationships to leaf appearance, tillering, and dry matter accumulation. J Exp Bot. 63: 69-89. https://doi.org/10.1093/jxb/err230
Ceglar A, van der Wijngaart R, de Wit A, Lecerf R, Boogaard H, Seguini L, van den Berg M, Toreti A, Zampieri M, Fumagalli D, et al. 2018. Improving WOFOST model to simulate winter wheat phenology in Europe: Evaluation and effects on yield. Agric Syst. 168: 168-180. https://doi.org/10.1016/j.agsy.2018.05.002
Chapagain T, Good A. 2015. Yield and production gaps in rainfed wheat, barley, and canola in Alberta. Front Plant Sci. 6: 990. https://doi.org/10.3389/fpls.2015.00990
Chmielewski FM, Müller A, Bruns E. 2004. Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961-2000. Agric For Meteorol. 121: 69-78. https://doi.org/10.1016/S0168-1923(03)00161-8
Christensen JH, Krishna Kumar K, Aldrian E, An SI, Cavalcanti IFA, de Castro M, Dong W, Goswami P, Hall A, Kanyanga JK, et al. 2013. Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
Connor DJ, Loomis RS, Cassman KG. 2011. Crop ecology: productivity and management in agricultural systems. 2nd edition. Cambridge, UK: Cambridge University Press.
Espe MB, Cassman KG, Yang H, Guilpart N, Grassini P, Van Wart J, Anders M, Beighley D, Harrell D, Linscombe S, et al. 2016. Yield gap analysis of US rice production systems shows opportunities for improvement. Field Crops Res. 196: 276-283. https://doi.org/10.1016/j.fcr.2016.07.011
Farooq M, Hussain M, Siddique KH. 2014. Drought stress in wheat during flowering and grain-filling periods. Crit Rev Plant Sci. 33(4): 331-349. https://doi.org/10.1080/07352689.2014.875291
Farshi AA, Shariati MR, Jarallahi R, Ghaemi MR, Shahabifar M, Tulai MM. 1998. Estimation of water requirement of major agricultural and horticultural plants in Iran. Publication of Agricultural Education. Agricultural Research Education and Extension Organization (AREEO), Iran, pp. 1-1529 (In Persian).
Flohr BM, Hunt JR, Kirkegaard JA, Evans JR, Trevaskis B, Zwart A, Swan A, Fletcher AL, Rheinheimer B. 2018. Fast winter wheat phenology can stabilise flowering date and maximize grain yield in semi-arid Mediterranean and temperate environments. Field Crops Res. 223: 12-25. https://doi.org/10.1016/j.fcr.2018.03.021
Ghanem ME, Marrou H, Sinclair TR. 2015. Physiological phenotyping of plants for crop improvement. Trends Plant Sci. 20(3): 139-144. https://doi.org/10.1016/j.tplants.2014.11.006
Gobbett DL, Hochman Z, Horan H, Garcia JN, Grassini P, Cassman KG. 2017. Yield gap analysis of rainfed wheat demonstrates local to global relevance. J Agric Sci. 155(2): 282-299. https://doi.org/10.1017/S0021859616000381
Grassini P, van Bussel LG, van Wart J, Wolf J, Claessens L, Yang H, Boogaard H, de Groot H, van Ittersum MK, Cassman KG. 2015. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Res. 177: 49-63. https://doi.org/10.1016/j.fcr.2015.03.004
Hussain A, Ghaudhry MR, Wajad A, Ahmed A, Rafiq M, Ibrahim M, Goheer AR. 2004. Influence of water stress on growth, yield and radiation use efficiency of various wheat cultivars. Int J Agric Biol. 6(6): 1074-1079.
Koo J, Dimes JP. 2010. Generic soil profiles for crop modeling applications (HC27). International Food Policy Research Institute, Washington, DC, and University of Minnesota, St. Paul, MN. Available online at
http://harvestchoice.org/node/662
Liu B, Chen X, Meng Q, Yang H, van Wart J. 2017. Estimating maize yield potential and yield gap with agro-climatic zones in China—Distinguish irrigated and rainfed conditions. Agric For Meteorol. 239: 108-117. https://doi.org/10.1016/j.agrformet.2017.02.035
Lollato RP, Patrignani A, Ochsner TE, Edwards JT. 2016. Prediction of plant available water at sowing for winter wheat in the southern great plains. Agron J. 108(2): 745-757. https://doi.org/10.2134/agronj2015.0433
Lollato RP, Edwards JT, Ochsner TE. 2017. Meteorological limits to winter wheat productivity in the US southern Great Plains. Field Crops Res. 203: 212-226. https://doi.org/10.1016/j.fcr.2016.12.014
Ludlow MM, Muchow RC. 1990. A critical evaluation of traits for improving crop yields in water-limited environments. Adv Agron. 43: 107-153. https://doi.org/10.1016/S0065-2113(08)60477-0
Martre P, Quilot-Turion B, Luquet D, Memmah MMOS, Chenu K, Debaeke P. 2015. Model-assisted phenotyping and ideotype design. In: Sadras VO and Calderini DF (eds.) Crop physiology. Second edition. Cambridge, USA: Academic Press, pp. 349-373.
https://doi.org/10.1016/B978-0-12-417104-6.00014-5
Ministry of Agriculture of Iran. 2016. The crop varieties (past and future). Agricultural Research Education and Extension Organization (AREEO), Office of Research Planning and Monitoring, Tehran, Iran (In Persian).
Moeller C, Rebetzke G. 2017. Performance of spring wheat lines near-isogenic for the reduced-tillering ‘tin’trait across a wide range of water-stress environment-types. Field Crops Res. 200: 98-113. https://doi.org/10.1016/j.fcr.2016.10.010
Pala M, Oweis T, Benli B, De Pauw E, El Mourid M, Karrou M, Jamal M, Zencirci N. 2011. Assessment of wheat yield gap in the Mediterranean: case studies from Morocco, Syria, and Turkey. International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria.
Parry MAJ, Reynolds M, Salvucci ME, Raines C, Andralojc PJ, Zhu X, Price GD, Condon AG, Furbank RT. 2011. Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J Exp Bot. 62 (2): 453-467. https://doi.org/10.1093/jxb/erq304
Patrignani A, Lollato RP, Ochsner TE, Godsey CB, Edwards J. 2014. Yield gap and production gap of rainfed winter wheat in the southern Great Plains. Agron J. 106(4): 1329-1339. https://doi.org/10.2134/agronj14.0011
Peng S, Khush GS, Virk P, Tang Q, Zou Y. 2008. Progress in ideotype breeding to increase rice yield potential. Field Crops Res. 108(1): 32-38. https://doi.org/10.1016/j.fcr.2008.04.001
Rahemi KA, Galeshi S, Soltani A. 2015. Evaluation of improvement of rate and duration of grain filling duration inbreeding processes in wheat cultivars. J Plant Prod Res. 22(1): 23-37 (In Persian with English abstract). https://dor.isc.ac/dor/20.1001.1.23222050.1394.22.1.2.9
Ramirez-Villegas J, Challinor A. 2012. Assessing relevant climate data for agricultural applications. Agric For Meteorol. 161: 26-45. https://doi.org/10.1016/j.agrformet.2012.03.015
Ray JD, Heatherly LG, Fritschi FB. 2006. Influence of large amounts of nitrogen on nonirrigated and irrigated soybean. Crop Sci. 46(1): 52-60. https://doi.org/10.2135/cropsci2005.0043
Richards RA, Townley-Smith TF. 1987. Variation in leaf area development and its effect on water use, yield and harvest index of droughted wheat. Aust J Agric Res. 38(6): 983-992. https://doi.org/10.1071/AR9870983
Salehi F. 2012. Desired food basket for Iranian people. Andisheh Mandegar Press, 58 pp. (In Persian).
Sedgley RH. 1991. An appraisal of the Donald ideotype after 21 years. Field Crops Res. 26(2): 93-112. https://doi.org/10.1016/0378-4290(91)90031-P
Semenov MA, Stratonovitch P. 2013. Designing high‐yielding wheat ideotypes for a changing climate. Food Energy Secur. 2(3):185-196. https://doi.org/10.1002/fes3.34
Semenov MA, Stratonovitch P, Alghabari F, Gooding MJ. 2014. Adapting wheat in Europe for climate change. J Cereal Sci. 59(3): 245-256. https://doi.org/10.1016/j.jcs.2014.01.006
Sinclair TR. 2011. Challenges in breeding for yield increase for drought. Trends Plant Sci. 16(6): 289-293. https://doi.org/10.1016/j.tplants.2011.02.008
Sinclair TR, Muchow RC. 2001. System analysis of plant traits to increase grain yield on limited water supplies. Agron J. 93(2): 263-270. https://doi.org/10.2134/agronj2001.932263x
Sinclair TR, Purcell LC, Vadez V, Serraj R, King CA, Nelson R. 2000. Identification of soybean genotypes with N2 fixation tolerance to water deficits. Crop Sci. 40(6): 1803-1809. https://doi.org/10.2135/cropsci2000.4061803x
Sinclair TR, Hammer GL, Van Oosterom EJ. 2005. Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate. Funct Plant Biol. 32(10): 945-952. https://doi.org/10.1071/fp05047
Sinclair TR, Messina CD, Beatty A, Samples M. 2010. Assessment across the United States of the benefits of altered soybean drought traits. Agron J. 102(2): 475-482. https://doi.org/10.2134/agronj2009.0195
Soltani A, Galeshi S. 2002. Importance of rapid canopy closure for wheat production in a temperate sub-humid environment: experimentation and simulation. Field Crops Res. 77(1): 17-30. https://doi.org/10.1016/S0378-4290(02)00045-X
Soltani A, Sinclair TR. 2011. A simple model for chickpea development, growth and yield. Field Crops Res. 124(2): 252-260. https://doi.org/10.1016/j.fcr.2011.06.021
Soltani A, Sinclair TR. 2012a. Identifying plant traits to increase chickpea yield in water-limited environments. Field Crops Res. 133: 186-196. http://dx.doi.org/10.1016/j.fcr.2012.04.006
Soltani A, Sinclair TR. 2012b. Optimizing chickpea phenology to available water under current and future climates. Eur J Agron. 38: 22-31. https://doi.org/10.1016/j.eja.2011.11.010
Soltani A, Sinclair TR. 2012c. Modeling physiology of crop development, growth and yield. CABI. 322 pp.
Soltani A, Sinclair TR. 2015. A comparison of four wheat models with respect to robustness and transparency: simulation in a temperate, sub-humid environment. Field Crops Res. 175: 37-46. https://doi.org/10.1016/j.fcr.2014.10.019
Sultana H, Ali N, Iqbal MM, Khan AM. 2009. Vulnerability and adaptability of wheat production in different climatic zones of Pakistan under climate change scenarios. Clim Change. 94: 123-142. https://doi.org/10.1007/s10584-009-9559-5
Tao F, Rötter RP, Palosuo T, Díaz-Ambrona CGH, Mínguez MI, Semenov MA, Kersebaum KC, Nendel C, Cammarano D, Hoffmann H, et al. 2017. Designing future barley ideotypes using a crop model ensemble. Eur J Agron. 82: 144-162. https://doi.org/10.1016/j.eja.2016.10.012
Turner NC, Nicolas ME. 1998. Early vigour: a yield-positive characteristic for wheat in drought-prone mediterranean-type environments. In: Behl RK, Singh DP, Lodhi GP (eds.) Crop improvement for stress tolerance. New Delhi: CCSHAU, Hisar & MMB.
Vadez V. 2014. Root hydraulics: the forgotten side of roots in drought adaptation. Field Crops Res. 165: 15-24. https://doi.org/10.1016/j.fcr.2014.03.017
Vadez V, Soltani A, Sinclair TR. 2013. Crop simulation analysis of phenological adaptation of chickpea to different latitudes of India. Field Crops Res. 146: 1-9. https://doi.org/10.1016/j.fcr.2013.03.005
van Bussel LG, Grassini P, van Wart J, Wolf J, Claessens L, Yang H, Boogaard H, de Groot H, Saito K, Cassman, KG, et al. 2015. From field to atlas: upscaling of location-specific yield gap estimates. Field Crops Res. 177: 98-108. https://doi.org/10.1016/j.fcr.2015.03.005
van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, et al. 2011. The representative concentration pathways: an overview. Clim Change. 109(5): 2011. https://doi.org/10.1007/s10584-011-0148-z
Wang B, Li LD, Asseng S, Macadam I, Yu Q. 2017. Modelling wheat yield change under CO2 increase, heat and water stress in relation to plant available water capacity in eastern Australia. Eur J Agron. 90: 152-161. http://dx.doi.org/10.1016/j.eja.2017.08.005
Zaman-Allah M, Jenkinson DM, Vadez V. 2011. A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea. J Exp Bot. 62(12): 4239-4252. https://doi.org/10.1093/jxb/err139
Zhu D, Lin X, Chen W, Sun Y, Lu W, Duan B, Zhang Y. 2002. Nutritional characteristics and fertilizer management strategies for super ricefigure variety Xieyou 9308. Ch