Abhari A, Gholinezhad E. 2019. Effect of humic acid on grain yield and yield components in chickpea under different irrigation levels. J Plant Physiol Breed. 9: 19-29.
https://doi.org/10.22034/jppb.2019.10441
Ahmad Z, Waraich EA, Akhtar S, Anjum S, Ahmad T, Mahboob W, Hafeez OBA, Tapera T, Labuschagne M, Rizwan M. 2018. Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiol Plant. 40: 80.
https://doi.org/10.1007/s11738-018-2651-6
Alsudays IM, Alshammary FH, Alabdallah NM, Alatawi A, Alotaibi MM, Alwutayd KM, Alharbi MM, Alghanem SMS, Alzuaibr FM, Gharib HS,
et al. 2024. Applications of humic and fulvic acid under saline soil conditions to improve growth and yield in barley. BMC Plant Biol. 24: 191.
https://doi.org/10.1186/s12870-024-04863-6
Arnon AN. 1967. Method of extraction of chlorophyll in the plants. Agron J. 23: 112-121.
Babarabie M, Zarei H, Badeli S, Danyaei A. 2020. Humic acid and folic acid application improve marketable traits of cut tuberose (Polianthes tuberosa). J Plant Physiol Breed. 10: 85-91. https://doi.org/10.22034/JPPB.2020.12526
Batista DS, Felipe SHS, Silva TD, de Castro KM, Mamedes-Rodrigues TC, Miranda NA, Ríos-Ríos AM, Faria DV, Fortini EA, Chagas K,
et al. 2018. Light quality in plant tissue culture: does it matter? Vitr Cell Dev Biol. 54: 195-215.
https://doi.org/10.1007/s11627-018-9902-5
Bayat H, Shafie F, Aminifard MH, Daghighi S. 2021. Comparative effects of humic and fulvic acids as biostimulants on growth, antioxidant activity and nutrient content of yarrow (
Achillea millefolium L.). Sci Hortic. 279: 109912.
https://doi.org/10.1016/j.scienta.2021.109912
Bell L, Oruna-Concha MJ, Wagstaff C. 2015. Identification and quantification of glucosinolate and flavonol compounds in rocket salad (
Eruca sativa,
Eruca vesicaria and
Diplotaxis tenuifolia) by LC–MS: highlighting the potential for improving nutritional value of rocket crops. Food Chem. 172: 852-861.
https://doi.org/10.1016/j.foodchem.2014.09.116
Cameron RWF, Harrison-Murray RS, Scott MA. 1999. The use of controlled water stress to manipulate growth of container-grown Rhododendron cv. Hoppy. J Hortic Sci Biotechnol. 74: 161-69.
https://doi.org/10.1080/14620316.1999.11511089
Caruso G, Formisano L, Cozzolino E, Pannico A, El-Nakhel C, Rouphael Y, Tallarita A, Cenvinzo V, De Pascale S. 2020. Shading affects yield, elemental composition and antioxidants of perennial wall rocket crops grown from spring to summer in southern Italy. Plants. 9: 933.
https://doi.org/10.3390/plants9080933
Chai Q, Gan Y, Zhao C, Xu H-L, Waskom RM, Niu Y, Siddique KHM. 2016. Regulated deficit irrigation for crop production under drought stress. A review. Agron Sustain Dev. 36: 3.
https://doi.org/10.1007/s13593-015-0338-6
Chaves MM, Flexas J, Pinheiro C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 103: 551-560.
https://doi.org/10.1093/aob/mcn125
Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J,
et al. 2012. Mesophyll diffusion conductance to CO
2: an unappreciated central player in photosynthesis. Plant Sci. 193: 70-84.
https://doi.org/10.1016/j.plantsci.2012.05.009
Ghassemi Golezani K, Ardalan N, Raei Y, Dalil B. 2022. Improving some physiological and yield parameters of safflower by foliar sprays of Fe and Zn under drought stress. J Plant Physiol Breed. 12: 15-27. https://doi.org/10.22034/jppb.2022.14657
González-Espíndola LÁ, Pedroza-Sandoval A, Trejo-Calzada R, Jacobo-Salcedo MDR, García de Los Santos G, Quezada-Rivera JJ. 2024. Relative water content, chlorophyll index, and photosynthetic pigments on Lotus corniculatus L. in response to water deficit. Plants. 13: 961. https://doi.org/10.3390/plants13070961
Han K, Wang C, Gao Y, Zhang J, Xie J. 2025. Response of amino acids, phenolic acids, organic acids, and mineral elements to fulvic acid in spinach (
Spinacia oleracea L.) under nitrate stress. Sci Rep. 15: 9444.
https://doi.org/10.1038/s41598-025-93974-7
Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125: 189-198.
https://doi.org/10.1016/j.abb.2022.109248
Heidari M, Golpayegani A. 2012. Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (
Ocimum basilicum L.). J Saudi Soc Agric Sci. 11: 57-61.
https://doi.org/10.1016/j.jssas.2011.09.001
Hosseinifard M, Stefaniak S, Ghorbani Javid M, Soltani E, Wojtyla Ł, Garnczarska M. 2022. Contribution of exogenous proline to abiotic stresses tolerance in plants: a review. Int J Mol Sci. 23: 5186.
https://doi.org/10.3390/ijms23095186
Hussain S, Iqbal N, Rahman T, Liu T, Brestic M, Safdar ME, Asghar MA, Farooq MU, Shafiq I, Ali A,
et al. 2019. Shade effect on carbohydrates dynamics and stem strength of soybean genotypes. Environ Exp Bot. 162: 374-382.
https://doi.org/10.1016/j.envexpbot.2019.03.011
Irigoyen JJ, Einerich DW, Sánchez‐Díaz M. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (
Medicago sativd) plants. Physiol Plant. 84: 55-60.
https://doi.org/10.1111/j.1399-3054.1992.tb08764.x
Keskin B, Akhoundnejad Y, Dasgan HY, Gruda NS. 2025. Fulvic acid, amino acids, and vermicompost enhanced yield and improved nutrient profile of soilless iceberg lettuce. Plants. 14: 609.
https://doi.org/10.3390/plants14040609
Khan I, Sohail, Zaman S, Li G, Fu M. 2025. Adaptive responses of plants to light stress: mechanisms of photoprotection and acclimation. A review. Front Plant Sci. 16: 1550125.
https://doi.org/10.3389/fpls.2025.1550125
Pereira LS, Oweis T, Zairi A. 2002. Irrigation management under water scarcity. Agric Water Manag. 57: 175-206. https://doi.org/10.1016/s0378-3774(02)00075-6
Raza MA, Feng LY, Iqbal N, Khan I, Meraj TA, Xi ZJ, Naeem M, Ahmed S, Sattar MT, Chen YK, et al. 2020. Effects of contrasting shade treatments on the carbon production and antioxidant activities of soybean plants. Funct Plant Biol. 47: 342-354. https://doi.org/10.1071/fp19213
Resh HM. 2022. Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower. Boca Raton, Fla: CRC Press.
https://doi.org/10.1201/9781003133254
Sairam RK, Rao KV, Srivastava GC. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163: 1037-1046.
https://doi.org/10.1016/s0168-9452(02)00278-9
Santander C, González F, Pérez U, Ruiz A, Aroca R, Santos C, Cornejo P, Vidal G. 2024. Enhancing water status and nutrient uptake in drought-stressed lettuce plants (
Lactuca sativa l.) via inoculation with different
Bacillus spp. isolated from the Atacama Desert. Plants. 13: 158.
https://doi.org/10.3390/plants13020158
Sarabi B. 2024. Effect of nutrient solution concentrations and irrigation levels combined with humic acid on physiological and quality characteristics of rocket crop (Eruca sativa (Mill.) Thell.). Arid L Res Manag. 38: 201-225. https://doi.org/10.1080/15324982.2023.2284361
Sarabi B, Ghaderi N, Ghashghaie J. 2022. Light-emitting diode combined with humic acid improve the nutritional quality and enzyme activities of nitrate assimilation in rocket (
Eruca sativa (Mill.) Thell.). Plant Physiol Biochem. 187: 11-24.
https://doi.org/10.1016/j.plaphy.2022.07.035
Song H, Zhu W, Guo Z, Song T, Wang J, Gao C, Zhang H, Shen R. 2025. The impact of fulvic acid on the growth physiology, yield, and quality of tomatoes under drought conditions. Agronomy. 15: 1528.
https://doi.org/10.3390/agronomy15071528
Touil S, Richa A, Fizir M, Bingwa B. 2021. Shading effect of photovoltaic panels on horticulture crops production: a mini review. Rev Environ Sci Biotechnol. 20: 281-296.
https://doi.org/10.1007/s11157-021-09572-2
Vitale E, Velikova V, Tsonev T, Ferrandino I, Capriello T, Arena C. 2021. The interplay between light quality and biostimulant application affects the antioxidant capacity and photosynthetic traits of soybean (Glycine max L. Merrill). Plants. 10: 861. https://doi.org/10.3390/plants10050861
Wang Z, Yang Y, Yadav V, Zhao W, He Y, Zhang X, Wei C. 2022. Drought-induced proline is mainly synthesized in leaves and transported to roots in watermelon under water deficit. Hortic Plant J. 8: 615-626.
https://doi.org/10.1016/j.hpj.2022.06.009
Zhang X, Wang Z, Li Y, Guo R, Liu E, Liu X, Gu F, Yang Z, Li S, Zhong X, et al. 2022. Wheat genotypes with higher yield sensitivity to drought overproduced proline and lost minor biomass under severe water stress. Front Plant Sci. 13: 1035038.
https://doi.org/10.3389/fpls.2022.1035038
Živanović B, Milić Komić S, Tosti T, Vidović M, Prokić L, Veljović Jovanović S. 2020. Leaf soluble sugars and free amino acids as important components of abscisic acid-mediated drought response in tomato. Plants. 9: 1147. https://doi.org/10.3390/plants9091147