Ahmadi-Lahijani MJ, Emam Y. 2016. Post-anthesis drought stress effects on photosynthesis rate and chlorophyll content of wheat genotypes. J Plant Physiol Breed. 6(1): 35-52. https://breeding.tabrizu.ac.ir/article_6269.html
Amini A, Majidi MM, Mokhtari N, Ghanavati M. 2023. Drought stress memory in a germplasm of synthetic and common wheat: antioxidant system, physiological and morphological consequences. Sci Rep. 13(1): 8569. https://doi.org/10.1038/s41598-023-35642-2
Ashry NA, Ghonaim MM, Mohamed HI, Mogazy AM. 2018. Physiological and molecular genetic studies on two elicitors for improving the tolerance of six Egyptian soybean cultivars to cotton leaf worm. Plant Physiol Biochem. 130: 224-234. https://doi.org/https://doi.org/10.1016/j.plaphy.2018.07.010
Bijanzadeh E, Emam Y. 2012. Evaluation of crop water stress index, canopy temperature and grain yield of five Iranian wheat cultivars under late season drought stress. J Plant Physiol Breed. 2(1): 23-33. https://breeding.tabrizu.ac.ir/article_3087.html
Bouras E, Jarlan L, Khabba S, Er-Raki S, Dezetter A, Sghir F, Tramblay Y. 2019. Assessing the impact of global climate changes on irrigated wheat yields and water requirements in a semi-arid environment of Morocco. Sci Rep. 9(1): 19142. https://doi.org/10.1038/s41598-019-55251-2
Carrera CS, Savin R, Slafer GA. 2024. Critical period for yield determination across grain crops. Trends Plant Sci. 29(3): 329-342. https://doi.org/10.1016/j.tplants.2023.08.012
Chen T, Xie L, Wang G, Jiao J, Zhao J, Yu Q, Chen Y, Shen M, Wen H, Ou X, et al. 2024. Anthocyanins-natural pigment of colored rice bran: composition and biological activities. Food Res Int. 175: 113722. https://doi.org/https://doi.org/10.1016/j.foodres.2023.113722
Creelman RA, Mullet JE. 1995. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA. 92(10): 4114-4119. https://doi.org/10.1073/pnas.92.10.4114
Jahani Doghozlou M, Emam Y, Zamani A. 2025. The impacts of earlier flowering on grain yield of winter wheat cultivars under semi-arid conditions. Iran Agric Res. 44(1): 89-102. https://doi.org/10.22099/iar.2025.52009.1661
Jogawat A, Yadav B, Chhaya, Lakra N, Singh AK, Narayan OP. 2021. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: a review. Physiol Plant. 172(2): 1106-1132. https://doi.org/https://doi.org/10.1111/ppl.13328
Kang G, Li G, Xu W, Peng X, Han Q, Zhu Y, Guo T. 2012. Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J Proteome Res. 11(12): 6066-6079. https://doi.org/10.1021/pr300728y
Liu Z, Ding Y, Wang F, Ye Y, Zhu C. 2016. Role of salicylic acid in resistance to cadmium stress in plants. Plant Cell Rep. 35(4): 719-731. https://doi.org/10.1007/s00299-015-1925-3
Miura K, Tada Y. 2014. Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci. 5: 4. https://doi.org/10.3389/fpls.2014.00004
Mustafa T, Sattar A, Sher A, Ul-Allah S, Ijaz M, Irfan M, Butt M, Cheema M. 2021. Exogenous application of silicon improves the performance of wheat under terminal heat stress by triggering physio-biochemical mechanisms. Sci Rep. 11: 23170. https://doi.org/10.1038/s41598-021-02594-4
Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M. 2021. Osmoregulation and its actions during the drought stress in plants. Physiol Plant. 172(2): 1321-1335. https://doi.org/https://doi.org/10.1111/ppl.13297
Serna-Escolano V, Martínez-Romero D, Giménez MJ, Serrano M, García-Martínez S, Valero D, Valverde JM, Zapata PJ. 2021. Enhancing antioxidant systems by preharvest treatments with methyl jasmonate and salicylic acid leads to maintain lemon quality during cold storage. Food Chem. 338: 128044. https://doi.org/https://doi.org/10.1016/j.foodchem.2020.128044
Shah Jahan M, Wang Y, Shu S, Zhong M, Chen Z, Wu J, Sun J, Guo S. 2019. Exogenous salicylic acid increases the heat tolerance in Tomato (Solanum lycopersicum L) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Sci Hortic. 247: 421-429. https://doi.org/https://doi.org/10.1016/j.scienta.2018.12.047
Shazadi K, Christopher JT, Chenu K. 2024. Does late water deficit induce root growth or senescence in wheat? Front Plant Sci. 15: 1351436. https://doi.org/10.3389/fpls.2024.1351436
Shemi R, Wang R, Gheith EMS, Hussain HA, Hussain S, Irfan M, Cholidah L, Zhang K, Zhang S, Wang L. 2021. Effects of salicylic acid, zinc and glycine betaine on morpho-physiological growth and yield of maize under drought stress. Sci Rep. 11(1): 3195. https://doi.org/10.1038/s41598-021-82264-7
Slafer GA, Savin R, Pinochet D, Calderini DF. 2021. Wheat. In: Sadras VO, Calderini DF. (eds.) Crop physiology case histories for major crops. London: Academic Press, pp. 98-163. https://doi.org/10.1016/B978-0-12-819194-1.00003-7
Sofy MR, Seleiman MF, Alhammad BA, Alharbi BM, Mohamed HI. 2020. Minimizing adverse effects of Pb on maize plants by combined treatment with jasmonic, salicylic acids and proline. Agronomy. 10(5): 699. https://doi.org/10.3390/agronomy10050699
Sun J, Chen Q, Qi L, Jiang H, Li S, Xu Y, Liu F, Zhou W, Pan J, Li X, et al. 2011. Jasmonate modulates endocytosis and plasma membrane accumulation of the Arabidopsis PIN2 protein. New Phytol. 191(2): 360-375. https://doi.org/https://doi.org/10.1111/j.1469-8137.2011.03713.x
Tayyab N, Naz R, Yasmin H, Nosheen A, Keyani R, Sajjad M, Hassan MN, Roberts TH. 2020. Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize. PLoS One. 15(5): e0232269. https://doi.org/10.1371/journal.pone.0232269
Yang Z-B, He C, Ma Y, Herde M, Ding Z. 2017. Jasmonic acid enhances Al-induced root growth inhibition. Plant Physiol. 173(2) : 1420-1433. https://doi.org/10.1104/pp.16.01756
Zamani A, Emam Y, Edalat M. 2024. Response of bread wheat cultivars to terminal water stress and cytokinin application from a grain phenotyping perspective. Agronomy. 14(1): 182. https://doi.org/10.3390/agronomy14010182