Abdel Latef AAH, Abu Alhmad MF, Kordrostami M, Abo-Baker Abd-Elmoniem Abo-Baker ABAE, Zakir, A. 2020. Inoculation with
Azospirillum lipoferum or
Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions. J Plant Growth Regul. 39: 1293-1306.
https://doi.org/10.1007/s00344-020-10065-9
Abd El-Mageed TA, Rady MM, Taha RS, Abd El Azeam S, Simpson CR, Semida WM. 2020. Effects of integrated use of residual sulfur-enhanced biochar with effective microorganisms on soil properties, plant growth and short-term productivity of
Capsicum annuum under salt stress. Sci Hortic. 261: 108930.
https://doi.org/10.1016/j.scienta.2019.108930
Abdoli S, Ghassemi-Golezani K. 2025. Foliar treatments of salicylic acid and iron nanoparticles enhanced antioxidant potential and essential oil production of ajowan under salt stress. Plant Biosyst. 159(1): 92-102.
https://doi.org/10.1080/11263504.2024.2446790
Abdoli S, Ghassemi-Golezani K, Alizadeh-Salteh S. 2020. Responses of ajowan (
Trachyspermum ammi L.) to exogenous salicylic acid and iron-oxide nanoparticles under salt stress.
Environ Sci Pollut Res Int. 27(29): 36939-36953.
https://doi.org/10.1007/s11356-020-09453-1
Ansari M, Shekari F, Mohammadi MH, Juhos K, Végvári G, Biró B. 2019. Salt-tolerant plant growth-promoting bacteria enhanced salinity tolerance of salt-tolerant alfalfa (
Medicago sativa L.) cultivars at high salinity. Acta Physiol Plant. 41: 195.
https://doi.org/10.1007/s11738-019-2988-5
Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S. 2020. Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiol Biochem. 156: 64-77.
https://doi.org/10.1016/j.plaphy.2020.08.042
Arkhipova T, Martynenko E, Sharipova G, Kuzmina L, Ivanov I, Garipova M, Kudoyarova G. 2020. Effects of plant growth promoting rhizobacteria on the content of abscisic acid and salt resistance of wheat plants. Plants. 9(11): 1429.
https://doi.org/10.3390/plants9111429
Aziz A, Akram NA, Ashraf M. 2018. Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (
Chenopodium quinoa Willd.) plants under water deficit regimes. Plant Physiol. Biochem. 123: 192-203.
https://doi.org/10.1016/j.plaphy.2017.12.004
Bal HB, Nayak L, Das S, Adhya TK. 2013. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil. 366: 93-105.
https://doi.org/10.1007/s11104-012-1402-5
Banaei-Asl F, Bandehagh A, Dorani Uliaei E, Farajzadeh D, Sakata K, Mustafa G, Komatsu S. 2015. Proteomic analysis of canola root inoculated with bacteria under salt stress
. J Proteomics. 124: 88-111.
https://doi.org/10.1016/j.jprot.2015.04.009
Busch D, Glaser B. 2015. Stability of co-composted hydrochar and biochar under field conditions in a temperate soil. Soil Use Manag. 31(2): 251-258.
https://doi.org/10.1111/sum.12180
Carter MR, Gregorich EG. 2008. Soil sampling and methods of analysis. Second edition. Manitoba, Canada: Canadian Society of Soil Science. 1262 pages.
https://doi.org/10.1201/9781420005271
Chapman HD. 1965. Cation exchange capacity. In: Black CA (ed.). Methods of soil analysis. Madison, Wisconsin: American Society of Agronomy. pp. 891-901.
Farouk S, Elhindi KM, Alotaibi MA. 2020. Silicon supplementation mitigates salinity stress on
Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. Ecotoxicol Environ Saf. 206: 111396.
https://doi.org/10.1016/j.ecoenv.2020.111396
Ghassemi-Golezani K, Abdoli S. 2021. Improving ATPase and PPase activities, nutrient uptake and growth of salt stressed ajowan plants by salicylic acid and iron-oxide nanoparticles. Plant Cell Rep. 403): 559-573.
https://doi.org/10.1007/s00299-020-02652-7
Ghassemi-Golezani K, Abdoli S. 2023. Alleviation of salt stress in rapeseed (
Brassica napus L.) plants by biochar-based rhizobacteria: new insights into the mechanisms regulating nutrient uptake, antioxidant activity, root growth and productivity. Arch Agron Soil Sci. 69(9): 1548-1565.
https://doi.org/10.1080/03650340.2022.2103547
Ghassemi-Golezani K, Abdoli S. 2024. Salicylic acid and iron-oxide nanoparticles improved the growth and productivity of ajowan under salt stress. Adv Hortic Sci. 38(2): 129-139.
https://doi.org/10.36253/ahsc-15671
Ghassemi-Golezani K, Farhadi N. 2021. The efficacy of salicylic acid levels on photosynthetic activity, growth, and essential oil content and composition of pennyroyal plants under salt stress. J Plant Growth Regul. 41: 1953-1965.
https://doi.org/10.1007/s00344-021-10515-y
Ghassemi-Golezani K, Mousavi SA. 2022. Improving physiological performance and grain yield of maize by salicylic acid treatment under drought stress. J Plant Physiol Breed. 12(2): 1-10.
https://doi.org/10.22034/JPPB.2022.16041
Ghassemi-Golezani K, Rahimzadeh S. 2024. Biochar-based nanoparticles mitigated arsenic toxicity and improved physiological performance of basil via enhancing cation exchange capacity and ferric chelate reductase activity. Chemosphere. 362: 142623.
https://doi.org/10.1016/j.chemosphere.2024.142623
Ghassemi-Golezani K, Farhangi-Abriz S, Abdoli S. 2021. How can biochar-based metal oxide nanocomposites counter salt toxicity in plants? Environ Geochem Health. 43(5): 2007-2023.
https://doi.org/10.1007/s10653-020-00780-3
Guerzoni JTS, Belintani NG, Moreira RMP, Hoshino AA, Domingues DS, Filho JCB, Vieira LGE. 2014. Stress-induced D1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane. Acta Physiol Plant. 36(9): 2309-2319.
https://doi.org/10.1007/s11738-014-1579-8
Gupta S, Pandey S. 2019. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (
Phaseolus vulgaris) plants. Front Microbiol. 10: 1506.
https://doi.org/10.3389/fmicb.2019.01506
Hussain S, Huang J, Zhu C, Zhu L, Cao X, Hussain S, Ashraf M, Khaskheli MA, Kong Y, Jin Q,
et al. 2020. Pyridoxal 5′-phosphate enhances the growth and morpho-physiological characteristics of rice cultivars by mitigating the ethylene accumulation under salinity stress. Plant Physiol Biochem. 154: 782-795.
https://doi.org/10.1016/j.plaphy.2020.05.035
Kan X, Ren J, Chen T, Cui M, Li C, Zhou R, Zhang Y, Liu H, Deng D, Yin Z. 2017. Effects of salinity on photosynthesis in maize probed by prompt fluorescence, delayed fluorescence and P700 signals. Environ Exp Bot. 140: 56-64.
https://doi.org/10.1016/j.envexpbot.2017.05.019
Kapadia C, Sayyed RZ, El Enshasy HA, Vaidya H, Sharma D, Patel N, Malek RA, Syed A, Elgorban AM, Ahmad K,
et al. 2021. Halotolerant microbial consortia for sustainable mitigation of salinity stress, growth promotion, and mineral uptake in tomato plants and soil nutrient enrichment. Sustainability. 13(15): 8369.
https://doi.org/10.3390/su13158369
Kasotia A, Varma A, Tuteja N, Choudhary DK. 2016. Amelioration of soybean plant from saline-induced condition by exopolysaccharide producing
Pseudomonas-mediated expression of high affinity K
+ -transporter (
HKT1) gene. Curr Sci. 111(12): 1961-1967.
https://doi.org/10.18520/cs/v111/i12/1961-1967
Kim WY, Ali Z, Park HJ, Park SJ, Cha JY, Perez-Hormaeche J, Quintero FJ, Shin G, Kim MR, Qiang Z,
et al. 2013. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in
Arabidopsis. Nat Commun. 4: 1352.
https://doi.org/10.1038/ncomms2357
Kochert A, 1978. Carbohydrate determination by phenol-sulfuric acid method. In: Hellebust JA, Craige JS (eds.). Handbook of physiology and biochemical methods. London: Cambridge University Press. pp. 95-97.
Lokhande VH, Nikam TD, Patade VY, Ahire ML, Suprasanna P. 2011a. Effects of optimal and supra-optimal salinity stress on antioxidative defense, osmolytes and in vitro growth responses in
Sesuvium portulacastrum L. Plant Cell Tiss Organ Cult. 104: 41-49.
https://doi.org/10.1007/s11240-010-9802-9
Lokhande VH, Srivastava AK, Srivastava S, Nikam TD, Suprasanna P. 2011b. Regulated alterations in redox and energetic status are the key mediators of salinity tolerance in the halophyte
Sesuvium portulacastrum L. Plant Growth Regul.
65: 287-298.
https://doi.org/10.1007/s10725-011-9600-3
Luo X, Liu G, Xia Y, Chen L, Jiang Z, Zheng H, Wang Z. 2017. Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. J Soils Sediments, 17: 780-789.
https://doi.org/10.1007/s11368-016-1361-1
Nia SH, Zarea MJ, Rejali F, Varma A. 2012. Yield and yield components of wheat as affected by salinity and inoculation with
Azospirillum strains from saline or non-saline soil. J Saudi Soc Agric Sci. 11(2): 113-121.
https://doi.org/10.1016/j.jssas.2012.02.001
Ohnishi N, Murata N. 2006. Glycine betaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in
Synechococcus sp. PCC 7942. Plant Physiol.
141(2): 758-765.
https://doi.org/10.1104/pp.106.076976
Pushpavalli R, Quealy J, Colmer TD, Turner NC, Siddique KHM, Rao MV, Vadez V. 2016. Salt stress delayed flowering and reduced reproductive success of chickpea (
Cicer arietinum L.), a response associated with Na
+ accumulation in leaves. J Agron Crop Sci. 202(2): 125-138.
https://doi.org/10.1111/jac.12128
Qian L, Chen B, Hu D. 2013. Effective alleviation of aluminum phytotoxicity by manure derived biochar. Environ Sci Technol. 47(6): 2737-2745.
https://doi.org/10.1021/es3047872
Radyukina NL, Toaima VIM, Zaripova NR. 2012. The involvement of low-molecular antioxidants in cross-adaptation of medicine plants to successive action of UV-B radiation and salinity. Russ J Plant Physiol. 59: 71-78.
https://doi.org/10.1134/s1021443712010165
Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K., 2013. Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. SpringerPlus. 2: 6.
https://doi.org/10.1186/2193-1801-2-6
Rasool S, Ahmad A, Siddiqi TO, Ahmad P. 2013. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant.
35: 1039-1050.
https://doi.org/10.1007/s11738-012-1142-4
Rizk MS, Mekawy AM, Assaha DV, Chuamnakthong S, Shalaby NE, Ueda A. 2021. Regulation of Na
+ and K
+ transport and oxidative stress mitigation reveal differential salt tolerance of two Egyptian maize (
Zea mays L.) hybrids at the seedling stage. J Plant Growth Regul. 40: 1629-1639.
https://doi.org/10.1007/s00344-020-10216-y
Shu S, Guo SR, Sun J, Yuan LY. 2012. Effects of salt stress on the structure and function of the photosynthetic apparatus in
Cucumis sativus and its protection by exogenous putrescine. Physiol Plant. 146(3): 285-296.
https://doi.org/10.1111/j.1399-3054.2012.01623.x
Šimanský V, Horák J, Igaz D, Balashov E, Jonczak J. 2018. Biochar and biochar with N fertilizer as a potential tool for improving soil sorption of nutrients. J Soils Sediments. 18: 1432-1440.
https://doi.org/10.1007/s11368-017-1886-y
Solhi-Khajehmarjan R, Ghassemi-Golezani K, Alizadeh Salteh S. 2025. The efficacy of solid and enriched biochars with magnesium and iron nanoparticles on growth and essential oil composition of German chamomile under salt stress. J Plant Physiol Breed. 15(1): 1-15.
https://doi.org/10.22034/jppb.2025.64958.1354
Song JM, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R,
et al. 2020. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of
Brassica napus. Nat Plants. 6(1): 34-45.
https://doi.org/10.1038/s41477-019-0577-7
Surender Reddy P, Jogeswar G, Rasineni GK, Maheswari M, Reddy AR, Varshney RK, Kavi Kishor PB. 2015. Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [
Sorghum bicolor (L.) Moench]. Plant Physiol Biochem. 94: 104-113.
https://doi.org/10.1016/j.plaphy.2015.05.014
Wang H, Tang X, Wang H, Shao HB. 2015. Proline accumulation and metabolism-related genes expression profiles in
Kosteletzkya virginica seedlings under salt stress. Front Plant Sci. 6: 792.
https://doi.org/10.3389/fpls.2015.00792
Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW. 2008. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter
HKT1. Mol Plant Microbe Interact. 21(6): 737-744.
https://doi.org/10.1094/MPMI-21-6-0737