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Article Info Abstract 

Article type: Objective: Fusarium is one of the most important causes of corn rot. Fusarium 

corn infection generally exists in corn seeds and causes a decrease in plant vigor, 

and leading to loss of seedlings. Given the significance of corn and the necessity 

to investigate the genes related to resistance against this pathogen, it is essential 

to acquire more comprehensive genomic and transcriptomic information. This 

study aimed to investigate the transcriptomic change of the two corn genotypes 

15 days after flowering. 

Methods: In this study, transcriptome analysis of two C7 and MO17 corn lines 

was conducted using RNA-Seq technology and the Illumina HiSeq 2500 

sequencing system. The C7 and MO17 lines have shown the highest 

differences in resistance and susceptibility to Fusarium rot, respectively. 
After sequencing and deletion of the low-quality reads, 1078 significant 

differential expressions were observed. 

Results: The analysis of gene ontology revealed that in the grouping of 

differential genes based on molecular function, the catalytic activity and binding 

groups accounted for the highest number of genes in both genotypes. Also, in 

classifying genes based on the biological process, the two groups of metabolic 

process and cellular process had the highest percentage of differential genes in 

both genotypes. In the KEGG pathway analysis, the most significant pathways 

belonged to the metabolic pathway, protein processing in the endoplasmic 

reticulum, and biosynthesis of secondary metabolites. The KEGG analysis of 

biological pathways in genotype C7 showed that a total of 144 differential 

expressions were assigned to 68 pathways. HB, MYB, and Bzip transcription 

factor families were among the important transcription factors that showed 

differential expression in this analysis.  
Conclusion: The seed development stage is controlled by transcription factors. 

ZmEREB167, as an endosperm-specific transcription factor, affects starch 

accumulation and grain size.  
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Introduction 

Corn (Zea mays L., 2n = 2x = 20) is an important food crop, which has allocated the highest 

production among crops in the world. The growing world population and the need to meet the demand 

for food necessitate an increase in the production of crop plants. According to the predictions, by 

2050 the demand for food will increase to twice the current level (FAO 2018). Increasing grain yield 

is one of the main goals of corn breeding programs. The number and weight of seeds are the most 

critical components of grain yield. Borrás and Otegui (2001) indicated that grain weight is influenced 

by seed filling rate, agrotechnical limitations, pests, and climatic conditions. 

Fusarium verticillioides (Sacc), formerly known as F. moniliforme, is one of the most common 

pathogens affecting corn fields globally (Battilani et al. 2003). This fungus leads to grain and ear rot 

in corn and is exacerbated by dry and hot climates (Eller et al. 2008). 

         RNA-Seq is a rather new molecular technology that uses cDNA sequencing technology on a 

large scale. This technology can identify gene isoforms, translocation events, gene variants (including 

types of SNPs and SSRs), and post-transcriptional changes (Wang et al. 2007). The RNA-Seq method 

was developed in 2008 and was first used to analyze yeast, mouse, human, and Arabidopsis 

transcriptomes. It is expected to be an excellent alternative to the microarray method because of its 

high sensitivity and resolution, and ability to sequence longer ranges of genes (Marioni et al. 2008). 

In this technique, the researcher is informed of the content of total RNA expressed under specific test 

conditions, including mRNA, non-coding RNA, differentially spliced transcripts, post-transcriptional 

mutations, and other gene events (Maher et al. 2009). One of the most important goals of RNA-seq 

experiments is to detect gene expression changes in two or more different conditions. The expression 

level of each RNA is determined by measuring the number of fragments sequenced for a specific 

transcript (Tarazona et al. 2011). The RNASeq method was applied for the first time to explore the 

molecular events related to the development of resistance to F. verticillioides in corn (Lanubile et al. 

2010). Also in this study, the expression profile of intra-genotypic and line differences was 

investigated, and the CO441 genotype showed the highest increase in differential expression. 
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Many studies have been conducted to discover the process of grain development and expression 

of related genes for grain growth in rice (Xu et al. 2012; Gao et al. 2013), Arabidopsis thaliana (Le 

et al. 2010; Belmonte et al. 2013), soybean (Jones and Vodkin 2013), and Tropaeolum majus (Jensen 

et al. 2012). The grain endosperm transcriptome was first sequenced by Lai et al. (2004), using the 

sequence tag method. The dynamic gene expression was identified in the seed development stage 

with the microarray-based technique of 3445 genes with differential expression (Liu et al. 2008), and 

Li et al. (2013) re-examined the transcriptome of corn embryo and endosperm with RNA-Seq. Several 

other studies have also used the RNA-Seq technology in corn (Bi et al. 2014; Lang et al. 2014; 

Lanubile et al. 2014; Niu et al. 2015). 

        The genetic control of the early stages of grain development after double fertilization was a 

complex and unknown process until recently. Yi et al. (2019) investigated the transcriptome by 

studying 31 corn samples collected in the first six days of grain development and in 4-6 hours. The 

results of the survey showed 22,790 differential genes in this stage, which included four groups: 

cellularization, coenocyte formation, differentiation, and double fertilization.  

      The present study aimed to investigate the transcriptional gene expression changes 15 days after 

pollination at the grain filling stage in the two corn genotypes MO17 and C7.  

 

Materials and Methods 

This research complied with relevant institutional, national, and international guidelines and 

legislation. 

 

Plant materials 

The two genotypes used in this study have shown the highest differences in resistance and 

susceptibility to Fusarium corn rot (Table 1). The tolerant C7 genotype was obtained from CIMMYT, 

and the susceptible MO17 line was provided by the Seed and Plant Improvement Institute, Karaj, Iran 

(Table 1). The seeds were planted in a seedling tray with field soil, Aeolian sand, and rotten manure 

in a ratio of 3:1:1, respectively. After 20 days, the seedlings were transferred to the field in the Gorgan 

Agricultural Research Station (25° 54' longitude and 54° 36' latitude), Gorgan University of 

Agricultural and Natural Resources, Gorgan, Iran. The between-row and within-row spacing were 75 

cm and 25 cm, respectively. Seed sampling was performed 15 days after manual pollination. The 

samples were frozen in liquid nitrogen and stored at -80 °C for extraction. 
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                      Table 1. Specifications of the corn genotypes used in the study. 

Line Line origin Response  to the disease 

MO17 USA Susceptible (S) 

C7 CIMMYT Very Resistant (VR) 

                       

RNA isolation and transcriptome sequencing 

The extraction of total RNA was carried out using a p-BIOZOL kit (Biofax, Japan) and then treated 

with the DNase I enzyme. The quantity and quality of the extracted RNA were evaluated by 

spectrophotometry at 260 nm and 1.5% agarose gel, respectively. This was done at the BGI company 

(Shenzhen, China) using the RNA-seq and NextFlex kit. The cDNA library was constructed on the 

Illumina HiSeqTM2500 (Illumina, USA) platform as paired-end at a read of 150 nt. Based on the 

bioanalyzer instrument, all samples had RIN values of greater than 7.5 and, thus, were suitable for 

constructing the cDNA library and sequencing. 

 

Next-generation RNA sequencing and bioinformatics analysis 

Raw data were controlled for quality and edited by the FastQC and Trimmomatic software. The reads 

having adapter sequences were omitted. Also, to acquire high-quality reads, the reads with unknown 

bases of greater than 5% and low quality were filtered. These reads were aligned against the B73 

reference genome (ZmB73_RefGen_v2; http://www.maizesequence.org) by the Hisat2 software 

(version 2.2.1.0). Cufflinks v2.0.2 and HtSeq were used to assemble the mapped reads from each 

sample. The gene alignment process was performed by Cufflinks 2.02 software (Trapnell et al. 2010), 

which assembles isoform transcripts and quantitative expression values, for example, fragments per 

kilobase of known exons per million mapped reads (FPKM), and new genes were identified using a 

reference genome assembly (AGPv3)1. These Cufflinks assemblies were merged by Cuffmerge. 

Then, the outputs were used for differential expression analysis by Cufdif and EdgeR packages, and 

differentially expressed genes (DEGs) with a false discovery rate (FDR) threshold of <0.001 were 

considered. The expressed functional DEGs were classified through the gene ontology (GO). To 

classify the genes based on their molecular role, biological process, and cellular compartment, the 

gene ontology DEGs were identified by the NCBI (www.ncbi.nlm.nih.gov) BLASTx (Nr) database, 

and the list of GOs of DEGs was analyzed by the AgriGO and gprofiler (http://biit.cs.ut.ee/ gprofiler/) 

online software. The analysis of pathway enrichment was conducted by the following database: 

                                                           
1

http://ftp.ensemblgenomes.org/pub/plants/release-25/fasta/zea_mays 
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https://string-db.org/cgi/input?sessionId=bOY6Uufuj0j2&input_page_active_form=multiple_identifers. 

Critical pathways were selected through Fisher’s exact test at the FDR of <0.001. 

 

Results 

Analysis of RNA-Seq datasets 

Transcriptome sequencing and mapping: Among the total reads, 26,178,434 transcripts in the C7 

line and 28,654,220 transcripts in the MO17 were explicitly mapped to the reference genome by Star 

Aligner (Table 2). 

 

   Table 2. The results of sequencing, quality control, and mapping at grain filling stage of two corn genotypes C7 and 

MO17.  

Sample C7 MO17 

Raw reads 26178434 28654220 

Clean reads 26021603 28465424 

Raw base (G) 7.85 8.60 

Clean base (G) 7.81 8.54 

Effective rate (%) 99.40 99.34 

Error rate (%) 0.01 0.01 

Sequencing depth  (%) (Q20) 96.5 96.68 

GC content (%) 55.71 57.2 

 

Identification of DEGs: The DEGs of the C7 and MO17 lines were identified by R software. The 

use of the TMM and edgeR methods resulted in 1953 DEGs, considering FDR <0.001 and Log 2 FC 

|2|. Of these DEGs, 1113 and 840 genes had significant up- and down-regulation at the grain filling 

stage, respectively. This comparison also identified 303 new codogenetics. The function of the novel 

genes was annotated using the NCBI non-redundant (NR) database, and some of them remained 

unknown. In total, 178 unique differentially expressed genes were successfully mapped to the 

reference genome. 

 

DEGs and gene ontology: DEGs were identified using Agri GO (Figure 1) and were classified into 

three main categories. Grouping of differential genes based on the cell component showed that in 

both genotypes, the cell and cell parts groups had the highest number of genes. At the molecular level, 

the catalytic activity and binding groups accounted for the largest number of genes in both genotypes. 

In the classification of genes based on biological process, the two groups, metabolic process and 

cellular process, involved the highest percentage of differential genes in the two genotypes. Response 

to the stimulus gene ontology group, which includes genes related to stresses, showed a higher 

increase in the expression in the tolerant parent C7, compared to MO17. Among the genes of the 

https://string-db.org/cgi/input?sessionId=bOY6Uufuj0j2&input_page_active_form=multiple_identifers


256                        Pesaraklu et al.                                                                                2024, 14(2): 251-268 

response to stimulus group, the genes related to the transcription factors (TFs) that are effective in 

the vital processes of the plant have been extracted and listed in Table 3. The results of the correlation 

network analysis between transcripts for the differential genes are shown in the Supplementary 

Figures 1, 2, and 3. 

  

 

 
Figure 1. Gene ontology for up- and down-expressed genes in the C7 and MO17 corn genotypes. 

. 
 

Table 3. Genes related to the response to stimulus group that are expressed more as transcription factors in response to 

stress in corn. 

Gene ID Position Line Transcription factor 

Zm00001d033566 Chromosome 1 MO17 E2F 

Zm00001d047339 Chromosome 9 C7 AP2/ERF-E 

Zm00001d026448 Chromosome 10 C7 AP2/ERF-E 

Zm00001d025589 Chromosome 10 C7 BZIP 

Zm00001d003412 Chromosome 2 C7 MYB 

Zm00001d022517 Chromosome 7 C7 NAC 

Zm00001d009619 Chromosome 8 MO17 WRKY 

 

The analysis of pathway enrichment using the KEGG database revealed the active biological 

pathways concerning the grain filling stage in corn. In our study, 53 and 46 pathways were identified 

in the C7 and MO17 lines, respectively. The most important pathways were protein processing in the 

endoplasmic reticulum, metabolic pathway, and biosynthesis of secondary metabolites. A total of 144 

annotated DEGs were assigned to 68 pathways, using the KEGG database on biological pathways in 

the C7 genotype. Among the 53 pathways, the most significant pathways were metabolic (27 genes), 

protein processing in the endoplasmic reticulum (5 genes), biosynthesis of amino acids (4 genes), and 

http://itak.feilab.net/cgi-bin/itak/online_display_seq.cgi?rid=P285142185182&pid=Zm00001d026448
http://itak.feilab.net/cgi-bin/itak/online_display_seq.cgi?rid=P285142185182&pid=Zm00001d003412
http://itak.feilab.net/cgi-bin/itak/online_display_seq.cgi?rid=P285142185182&pid=Zm00001d022517
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hormone signal transduction (4 genes). The KEGG analysis in the MO17 line revealed 122 DEGs 

involved in the biosynthesis of secondary metabolites (20 genes), energy metabolism pathways such 

as ribosome (6 genes), and phenylalanine, tyrosine, and tryptophan biosynthesis (6 genes) (Figure 2).       

 

 
Figure 2. Analysis of KEGG metabolic pathways for differential expression of genes of C7 (A) and MO17 (B) corn 

genotypes at the grain filling stage. 

 

Food metabolism pathways such as the metabolism of glutathione, fatty acids, alanine, beta-

alanine, aspartate, glutarate, peroxisome, and autophagy regulators were also significantly enriched 

(Figure 3). These cases have been related to the energy metabolism pathways, such as ribosome, 

metabolic pathways such as photosynthesis, carbohydrates, and biosynthesis of secondary 

metabolites, and show the expression of specific genes in storing metabolites in different stages of 

seed development. The significance of these pathes shows their importance in the grain-filling stage. 

 

Transcription factors, protein kinases, and transcriptional regulators analysis: In two lines, 36 

transcription factor-related genes were recognized. The top 21 transcription factor (TF) families were 

presented in the Supplementary Figure 4. The most significant members of the TFs belonged to the 

AP2/ERF family (8), followed by Bhlh (4), MYB-related (3), NAC (2), MYB (2), Bzip (2), and C2C2-

Dof(2). In the comparison of the two lines, a total of 31 genes encoding protein kinases were identified 

among the differentially expressed genes, which belonged to four families (Supplementary Figure 5). 
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These genes were expressed in the C7 and MO17 lines, respectively; 17 and 14 genes were related to 

protein kinases with increased differential expression. The TKL kinase gene family was present only 

in the C7 genotype. 

 

 
Figure 3. Differential expression enrichment of pathways associated with the grain filling stage of C7 and MO17 corn 

genotypes; FDR: false discovery rate. 

 

 

 

Figure 4. The KEGG enrichment pathway of starch and sucrose metabolism. 
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Discussion 

About 50% of the identified grain-specific genes were highly expressed in the course of endosperm 

differentiation (144 h after pollination). These genes are further divided into two subgroups of 

cellularization and differentiation (Chen et al. 2014). Among these genes, specific ESRs and basal 

endosperm transfer cell layer (BETLs) might have an essential impact on the endosperm cell 

differentiation (Yi et al. 2019). For example, Esr6 is a defensin gene, specifically expressed in the 

embryo surrounding region (ESR), which governs a protective role (Balandín et al. 2005). Several 

BETL2-specific genes, such as Betl3, hamper the entry of the pathogen into the developing seed using 

a specific defense response. By examining this stage, it may be possible to understand the deployment 

of defense mechanisms in differentiated tissues. BETL-specific genes are a set of genes expressed in 

the basal endosperm transfer layer (BETL) of maize seeds, a specialized cell layer crucial for nutrient 

transport between the maternal and filial tissues. These genes are often coordinately expressed during 

seed development and play a role in nutrient uptake and partitioning. (Magnard et al. 2003; Barrero 

et al. 2006). The study of Xie et al. (2018) showed that in two mutants, ZmDA1 and ZmDAR1, the 

transgenic plants outyielded the wild-types by 15% because they had higher grain number, grain 

weight, and starch content. The over-expression of Zmda1 and Zmdar1 genes resulted in a more 

developed BETL than the wild type.  

Transcription factors, as critical regulatory proteins, control the expression of several 

downstream genes. These genes play strategic roles in the plant responses to stress (Joshi et al. 2016). 

The control and regulation of the expression of several stress-related genes have made transcription 

factors suitable candidates for stress tolerance genes in genetic engineering and plant breeding. 

Isolation of CIPK25 and CarNAC4 transcription factors from chickpea and their transfer to tobacco 

and Arabidopsis plants, respectively, increased tolerance to water-deficit and salinity stresses (Meena 

et al. 2015; Yu et al. 2016). Acyl gene expression led to increased expression of free fatty acid 

synthesis under drought stress in wheat; fatty acids play a role in cell membrane repair and 

biosynthesis (Kazerani and Navabpour 2019). In a study, Yi et al. (2019) identified 22,790 expressed 

genes, including 1415 TFs, in the early stages of corn seed development. They were mainly involved 

in biological processes like grain filling (e.g., MYB81, BZIP46, and HB118). These transcription 

factors are activated to express BETL genes in the endosperm differentiation. According to Xiao et 

al. (2017), the MYB155 TF was highly expressed in the corn endosperm and involved in starch 

                                                           
2Basal Endosperm Transfer Layer 
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biosynthesis. López-González et al. (2022) also showed that the bZIP113 and ABI51 TFs could be 

involved in the regulation of sugar transport in the top internode of the corn stem.  

The stage of seed development is controlled by transcription factors. For example, ZmEREBs 

also play important roles in the development process in corn. There are 240 AP2/ERFs in maize, 

named ZmEREB1 to ZmEREB240 (Qi et al. 2023). OPAQUE11 directly regulates the expression of 

key TFs in nutrient accumulation and endosperm development, such as O2, Naked endosperm 

2 (NKD2), Prolamin-box binding factor 1 (PBF1), and DNA-binding with one finger TF (ZmDOF3) 

(Feng et al. 2018). DOF36 directly binds and activates the expression of starch biosynthesis genes 

Du1 and Su2, which in turn promotes the accumulation of starch in the endosperm (Qi et al. 2017). 

Also, several family members are active in embryonic development, germination, and metabolic 

pathways (Kato et al. 2007). Zinc finger protein activity has been reported in plant and animal 

development, and mutations in this family result in abnormal growth of the embryo and other 

morphological changes (Guan et al. 2019). 

The ubiquitin-proteasome pathway plays an essential role in the regulation of biological 

processes, protein metabolism, and recently, in the regulation of grain size (Li and Li 2014). The 

ubiquitin-proteosome system is one of the most essential mechanisms in the seed development 

process (Rangan et al. 2017) . 

In the KEEG pathway analysis, one and three significant differential genes were identified for 

the proteasome pathway and ubiquitin-mediated proteolysis, respectively. Guan et al. (2019) 

identified 26 differential genes for these two pathways in wheat plants. Also, the enrichment of 

hormone signal transduction, sucrose and starch metabolism, and gluconeogenesis pathways 

corresponds to the expression pattern of grain development and increased grain size. These two 

pathways are activated through the response to auxin, gibberellin, ethylene, and jasmonic acid. 

Starch is one of the most essential components of corn as a source of energy in the diet (Wang et 

al. 2014), and its synthesis is a complex process. In this study, some genes involved in this pathway 

were identified, including sucrose-phosphate synthase and sucrose synthase. Also, three differential 

expression genes of fructose-bisphosphate aldolase were identified; these genes play a crucial role in 

glycogenesis. Sucrose produces starch by sucrose synthase and invertase (Weschke et al. 2000), and 

the decrease in the biosynthesis of starch genes leads to a reduction in grain starch and finally the 

phenotypic dishevelment of the grain (Scofield et al. 2002). An increase in glucose leads to the 

expression of ZmRP1 genes, which are responsible for regulating the transcription of BTEL genes 

(Sosso et al. 2015). Studies have shown that the development of transporter cells also increases the 

transfer of nutrients into the endosperm and increases the expression of genes involved in the sucrose 

https://www.sciencedirect.com/science/article/pii/S1673852725000268#bib27
https://www.sciencedirect.com/science/article/pii/S1673852725000268#bib46
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or glucose transport, which also improves the grain performance (Saalbach et al. 2014; Sosso et al. 

2015). 

Yin et al. (2019) used the bulked-segregant RNA-sequencing (BSR-seq) analysis and identified 

eight genes that showed differential gene expression patterns at several time points. Two 

genes, GRMZM2G391936 and GRMZM2G008263, are involved in the biosynthesis of secondary 

metabolites and the sucrose and starch metabolism. The results of the study by López-González et al. 

(2022) showed that in the early stages of seed development, the topmost female inflorescence, leaf 

blade, and leaf sheath had higher starch accumulation. The starch in the female inflorescence is 

synthesized in sink tissues to prepare for grain filling (Weise et al. 2011; Nagler et al. 2015; Scialdone 

and Howard 2015). 

        Photosynthesis and carbohydrate metabolism are essential metabolic processes that directly 

affect grain yield (Kriedemann 1966; Evans and Rawson 1970). Current hypotheses about the 

possible mechanisms of source-to-sink interactions are those involving sugars as signaling molecules. 

Current models show that many independent sugar-sensing pathways exist in plants. The seed weight 

depends on the photosynthetic capacity, and the remobilization of assimilates from the stems also 

determines the rate and length of grain filling, which ultimately determines the weight of the seeds 

(Ghassemi et al. 2020). In the study by Tarinejad et al. (2023) on rice, most of the gene ontologies 

were involved in the response to abiotic stresses and photosynthetic and metabolic processes. Also, 

sucrose synthesis and carbon partitioning throughout the plant considerably affect these processes 

(Hofius and Bornke 2007). Nitrogen availability is essential in the critical period of silking and during 

grain filling. Increasing the amount of dietary nitrogen leads to the activation of the trios-phosphate 

ZmSps1 gene (Ning et al. 2018); this gene is located in the inner membrane of the chloroplast and 

plays a crucial role in regulating the carbon flux from the chloroplast to the cytosol (Zeeman et al. 

2007; 2010). This action causes the synthesis of sucrose and ultimately the production of starch. In 

this study, porphyrin, chlorophyll metabolism, and carbon fixation by photosynthesis showed a 

significant differential expression increase in parent C7. Between the genes related to the response to 

F. verticillioides, a correlation has been observed with the genes involved in cell wall changes, lignin 

metabolic processes, and glycosyltransferase activity (Lanubile et al. 2014). In this study, 15 days 

after pollination, the abundance of glycosyltransferase genes (including Zm0000d039642) was 

expressed; this gene is effective in developing the plant's defense response to a stressful environment. 

Phosphohexokinase and hexokinase type IV glucokinase are the key regulatory genes involved in 

carbohydrate metabolism and show differential expression in the early and late grain-filling stages. 

Transaminase converts serine to hydroxy-pyruvate, leading to glycerate formation. Glycerate is 
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regarded as the key differentially expressed gene during early-grain filling, and it is associated with 

the photorespiration process. Phosphohexokinase and hexokinase type IV glucokinase are also 

involved in the respiratory metabolism (Rangan et al. 2017).  

 

Conclusion 

The transcriptome analysis of the lines C7 and MO17, resulted in 1078 significant differential 

expressions at the time of seed filling. Differentially expressed genes were implicated in pathways 

related to sugar and amino acid metabolism, carbon metabolism, metabolic pathways, and protein 

production process in the endoplasmic reticulum. Most of the genes involved in the grain filling, 

showed more differential expression in the C7 line. KEGG metabolic pathway analysis also showed 

that sucrose and starch metabolism pathway, plant hormone signal transduction, and glycogen 

synthesis were enriched with 14 differential genes. Next generation sequencing (NGS)-based 

transcriptome analysis (RNA-Seq) together with functional annotation are robust tools in identifying 

novel genes governing yield and metabolic pathways, which can improve our understanding of the 

complex metabolic networks. The information obtained from the complex metabolic networks, will 

facilitate the selection for genes governing grain filling. Also, the information obtained from the 

differentially expressed genes can be used to improve the yield and quality of the grain. A focus on 

silencing the genes that are involved in photorespiration might help to improve grain yield by 

reducing photorespiration, which in turn, will result in the increased efficiency of photosynthesis. 
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