Balandín M, Royo J, Gómez E, Muniz LM, Molina A, Hueros G. 2005. A protective role for the embryo surrounding region of the maize endosperm, as evidenced by the characterization of
ZmESR-6, a defensin gene specifically expressed in this region. Plant Mol Biol. 58(2): 269-282.
https://doi.org/10.1007/s11103-005-3479-1
Barrero C, Muñiz LM, Gómez E, Hueros G, Royo J. 2006. Molecular dissection of the interaction between the transcriptional activator
ZmMRP-1 and the promoter of
BETL-1. Plant Mol Biol. 62: 655-668.
https://doi.org/10.1007/s11103-006-9047-5
Battilani P, Rossi V, Pietri A. 2003. Modeling Fusarium verticillioides infection and fumonisin synthesis in maize ears. Asp Appl Biol. 68: 91-100.
Belmonte MF, Kirkbride RC, Stone SL, Pelletier JM, Bui AQ, Yeung EC, Hashimoto M, Fei J, Harada CM, Munoz MD,
et al. 2013. Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc Natl Acad Sci USA. 110(5): E435–E444.
https://doi.org/10.1073/pnas.1222061110
Bi YM, Meyer A, Downs GS, Shi X, El-cereamy A, Lukens L, Rothstein SJ. 2014. High throughput RNA sequencing of hybrid maize and its parents shows different mechanisms responsive to nitrogen limitation. BMC Genomics, 15: 77.
https://doi.org/10.1186/1471-2164-15-77
Chen J, Zeng B, Zhang M, Xie S, Wang G, Hauck A, Lai J. 2014. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiol. 166(1): 252–264.
https://doi.org/10.1104/pp.114.240689
Evans LT, Rawson HM. 1970. Photosynthesis and respiration by the flag leaf and components of the ear during grain development in wheat. Aust J Biol Sci. 23: 245-254.
https://doi.org/10.1071/BI9700245
FAO. 2018. The future of food and agriculture – Alternative pathways to 2050. Food and Agriculture Organization of the United Nations. Rome, Italy.
Feng F, Qi W, Lv Y, Yan S, Xu L, Yang W, Yuan Y, Chen Y, Zhao H, Song R,
et al. 2018. OPAQUE11 is a central hub of the regulatory network for maize endosperm development and nutrient metabolism. Plant Cell. 30: 375-396.
https://doi.org/10.1105/tpc.17.00616
Ghassemi A, Farzaneh S, Moharramnejad S. 2020. Impact of ascorbic acid on seed yield and its components in sweet corn (
Zea mays L.) under drought stress. J Plant Physiol Breed. 10(1): 41-49.
https://doi.org/10.22034/JPPB.2020.12492
Guan Y, Li G, Chu Z, Ru Z, Jiang X, Wen Z, Zhang G, Wang Y, Zhang Y, Wei W. 2019. Transcriptome analysis reveals important candidate genes involved in grain-size formation at the stage of grain enlargement in common wheat cultivar "Bainong 4199". PloS ONE. 14(3): e0214149.
https://doi.org/10.1371/journal. pone.0214149
Hofius D. Börnke FAJ. 2007. Photosynthesis, carbohydrate metabolism and source-sink relations. In: Vreugdenhil
et al. (eds.) Potato Biology and Biotechnology, Advances and Perspectives. Elsevier Science B.V., pp. 257-285.
https://doi.org/10.1016/B978-044451018-1/50055-5
Jensen JK, Schultink A, Keegstra K, Wilkerson CG, Pauly M. 2012. RNA-Seq analysis of developing nasturtium seeds (Tropaeolum majus): identification and characterization of an additional galactosyltransferase involved in xyloglucan biosynthesis. Mol Plant. 5(5): 984-992. https://doi.org/10.1093/mp/sss032
Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla-Pareek SL. 2016. Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci. 7: 1029.
https://doi.org/10.3389/fpls.2016.01029
Kato N, Dubouzet E, Kokabu Y, Yoshida S, Taniguchi Y, Dubouzet JG, Yazaki K, Sato F. 2007. Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in
Coptis japonica. Plant Cell Physiol. 4891): 8-18.
https://doi.org/10.1093/pcp/pcl041
Kazerani B, Navabpour S. 2019. Induced genes expression pattern in response to drought stress at seedling stage of wheat. J Plant Physiol Breed. 9(1): 111-128.
https://doi.org/10.22034/JPPB.2019.10388
Lai J, Dey N, Kim CS, Bharti. AK, Rudd. S, Mayer KFX, Larkins BA, Becraft P, Messing J. 2004. Characterization of the maize endosperm transcriptome and its comparison to the rice genome. Genome Res. 14(10A): 1932-1937.
https://doi.org/10.1101/gr.2780504
Lang Z, Wills DM, Lemmon ZH, Shannon LM, Bukowski R, Wu Y, Messing J and Doebley JF. 2014. Defining the role of prolamin box binding factor1 gene during maize domestication. J Hered. 105(4): 576-582.
https://doi.org/10.1093/jhered/esu019
Lanubile A, Pasini L, Marocco A. 2010. Differential gene expression in kernels and silks of maize lines with contrasting levels of ear rot resistance after
Fusarium verticillioides infection. J Plant Physiol. 167(16): 1398-1406.
https://doi.org/10.1016/j.jplph.2010.05.015
Lanubile A, Ferrarini A, Maschietto V, Delledonne M, Marocco A, Bellin D. 2014. Functional genomic analysis of constitutive and inducible defense responses to
Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genomics. 15(1): 710.
https://doi.org/10.1186/1471-2164-15-710
Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S,
et al. 2010. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci USA. 107(18): 8063-8070.
https://doi.org/10.1073/pnas.1003530107
Li B, Liu H, Zhang Y, Kang T, Zhang L, Tong J, Xiao L, Zhang H. 2013. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnol J. 11(9): 1080-1091.
https://doi.org/10.1111/pbi.12102
Liu X, Fu J, Gu D, Liu W, Liu T, Peng Y, Wang J, Wang G. 2008. Genome-wide analysis of gene expression profiles during the kernel development of maize (
Zea mays L.). Genomics. 91(4): 378-387.
https://doi.org/10.1016/j.ygeno.2007.12.002
López-González C, Juárez-Colunga S, Trachsel S, Marsch-Martínez N, Gillmor CS, Tiessen A. 2022. Analysis of global gene expression in maize (
Zea mays) vegetative and reproductive tissues that differ in accumulation of starch and sucrose. Plants (Basel) 11(3): 238.
https://doi.org/10.3390/plants11030238
Magnard JL, Lehouque G, Massonneau A, Frangne N, Heckel T, Gutierrez-Marcos JF, Perez P, Dumas C, Rogowsky PM. 2003.
ZmEBE genes show a novel, continuous expression pattern in the central cell before fertilization and in specific domains of the resulting endosperm after fertilization. Plant Mol Biol. 53(6): 821-836.
https://doi.org/10.1023/B:PLAN.0000023672.37089.00
Maher CA, Kumar Sinha C, Cao X, Kalyana Sundaram S, Han B, Jing X, Sam L, Barrette T, Palanisamy N, Chinnaiyan AM. 2009. Transcriptome sequencing to detect gene fusions in cancer. Nature. 458 (7234): 97-101.
https://doi.org/10.1038/nature07638
Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. 2008. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18(9): 1509-1517.
https://doi.org/10.1101/gr.079558.108
Meena MK, Ghawana S, Dwivedi V, Roy A, Chattopadhyay D. 2015. Expression of chickpea CIPK25 enhances root growth and tolerance to dehydration and salt stress in transgenic tobacco. Front Plant Sci. 6:683.
https://doi.org/10.3389/fpls.2015.00683
Nagler M, Nukarinen E, Weckwerth W, Nägele T. 2015. Integrative molecular profiling indicates a central role of transitory sarch breakdown in establishing a stable C/N homeostasis during cold acclimation in two natural accessions of
Arabidopsis thaliana. BMC Plant Biol. 15: 284.
https://doi.org/10.1186/s12870-015-0668-1
Niu C, Payane GA, Woloshuk CP. 2015. Transcriptome changes in
Fusarium verticillioides caused by mutation in the transporter-like gene
FST1. BMC Microbiol. 15: 90.
https://doi.org/10.1186/s12866-015-0427-3
Qi H, Liang K, Ke Y, Wang J, Yang P, Yu F, Qiu F. 2023. Advances of Apetala2/ethylene response factors in regulating development and stress response in maize. Int J Mol Sci. 12(24): 5416.
https://doi:10.3390/ijms24065416
Rangan P, Furtado A, Henry RJ. 2017. The transcriptome of the developing grain: a resource for understanding seed development and the molecular control of the functional and nutritional properties of wheat. BMC Genomics 18: 766.
https://doi.org/10.1186/s12864-017-4154-z
Saalbach I, Mora‐Ramírez I, Weichert N, Andersch. F, Guild G, Wieser H, Koehler P, Stangoulis J, Kumlehn J, Weschke W,
et al. 2014. Increased grain yield and micronutrient concentration in transgenic winter wheat by ectopic expression of a barley sucrose transporter. J Cereal Sci. 60(1): 75-81.
https://doi.org/10.1016/j.jcs.2014.01.017
Scofield GN, Hirose T, Gaudron JA, Furbank RT, Upadhyaya NM, Ohsugi R. 2002. Antisense suppression of the rice sucrose transporter gene,
OsSUT1, leads to impaired grain filling and germination but does not affect photosynthesis. Funct Plant Biol. 29(7): 815-826.
https://doi.org/10.1071/PP01204
Sosso D, Luo D, Li QB, Sasse J, Yang J, Gendrot G, Suzuki M, Koch KE, McCarty DR, Chourey PS,
et al. 2015. Seed filling in domesticated maize and rice depends on SWEET‐mediated hexose transport. Nat Gene. 47: 1489-1493.
https://doi.org/10.1038/ng.3422
Tarazona S, Garcia-Alcalde F, Dopazo J, Ferrer A, Conesa A. 2011. Differential expression in RNA-seq: a matter of depth. Genome Res. 21(12): 2213-2223.
https://doi.org/10.1101/gr.124321.111
Tarinejad A, Hoseinzadeh MR, Soltanpour A, Majidi M. 2023. Development of EST-SSR molecular markers in rice (
Oryza sativa L.) under salinity stress and identification of key genes. J Plant Physiol Breed. 13(2): 61-80.
https://doi.org/10.22034/JPPB.2023.54527.1290
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 28(5): 511-515.
https://doi.org/10.1038/nbt.1621
Wang D, Pajerowska-Mukhtar K, Hendrickson Culler A, Dong X. 2007. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol. 17(20): 1784-1790.
https://doi.org/10.1016/j.cub.2007.09.025
Wang S, Luo H, Zhang J, Zhang Y, He Z, Wang S. 2014. Alkali-induced changes in functional properties and
in vitro digestibility of wheat starch: the role of surface proteins and lipids. J Agric Food Chem. 62(16): 3636-3643.
https://doi.org/10.1021/jf500249w
Weise SE, van Wijk KJ, Sharkey TD. 2011. The role of transitory starch in C(3), CAM, and C(4) metabolism and opportunities for engineering leaf starch accumulation. J Exp Bot. 62(9): 3109-3118.
https://doi.org/10.1093/jxb/err035
Weschke W, Panitz R, Sauer N, Wang Q, Neubohn B, Weber H, Wobus U. 2000. Sucrose transport into barley seeds: molecular characterization of two transporters and implications for seed development and starch accumulation. Plant J. 21(5): 455-467.
https://doi.org/10.1046/j.1365-313x.2000.00695.x
Xiao Q, Wang Y, Du J, Li H, Wei B, Wang Y, Li Y, Yu G, Liu H, Zhang J,
et al. 2017. ZmMYB14 is an important transcription factor involved in the regulation of the activity of the ZmBT1 promoter in starch biosynthesis in maize. FEBS J. 284(18): 3079-3099.
https://doi.org/10.1111/febs.14179
Xie G, Li Z, Ran Q, Wang H, Zhang J. 2018. Over-expression of mutated ZmDA1 or ZmDAR1 gene improves maize kernel yield by enhancing starch synthesis. Plant Biotechnol J. 16(1): 234-244.
https://doi.org/10.1111/pbi.12763
Yi F, Gu W, Chen J, Song N, Gao X, Zhang X, Zhou. Y, Ma X, Song W, Zhao H,
et al. 2019. High temporal-resolution transcriptome landscape of early maize seed development. The Plant Cell 31(5): 974-992.
https://doi.org/10.1105/tpc.18.00961
Yin SH, Li P, Xu Y, Liu J, Yang T, Wei J, Xu S, Yu J, Fang H, Xue L,
et al. 2019. Genetic and genomic analysis of the seed-filling process in maize based on a logistic model. Heredity, 124: 122-134.
https://doi.org/10.1038/s41437-019-0251-x
Yu X, Liu Y, Wang S, Tao Y, Wang Z 2016. CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis. Plant Cell Rep. 35(3): 613-627.
https://doi.org/10.1007/s00299-015-1907-5