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Article Info Abstract 

Article type: Objective: Drought stress is one of the most important factors limiting the 

development and production of maize worldwide. In this regard, using nano-

fertilizers to control the release of nutrients can be a practical step towards 

achieving sustainable agriculture and environmental adaptation, and it is vital to 

induce drought stress tolerance in maize.  

Methods: We aimed to evaluate the effect of nano-chelating-based nitrogen and 

NPK fertilizers on both agronomic and physiological characteristics of maize 

under water-deficit stress conditions. A split-plot experiment was conducted 

based on a randomized complete block design to test the effect of the different 

fertilizers. The main plots included two levels of irrigation: optimum irrigation 

and water-deficit stress (irrigation after 140 mm evaporation from a Class A pan). 

The subplots involved various combinations of nano-chelated fertilizers at five 

doses, alongside a control using conventional chemical fertilizers.  

Results: Our results indicated that water-deficit stress adversely impacted 

various growth and productivity characteristics in maize. However, substituting 

conventional chemical fertilizers with nano-chelated fertilizers, even at a minimal 

level (10%), notably enhanced most studied traits compared to the control under 

water-deficit stress conditions. Specifically, treating plants with 222 kg/ha 

(Treatment 3 of the nano-chelated fertilizers (nano-chelated N20P20K20 96 kg/ha 

+ nano-chelated nitrogen 126 L/ha) of nano-chelated fertilizers instead of 840 

kg/ha of chemical fertilizers (300 kg/ha of triple superphosphate, 150 kg/ha of 

potassium sulfate, and 390 kg/ha of urea) resulted in a 33% increase in grain yield, 

overall improvements in yield components, and elevated nitrogen use efficiency 

under drought stress. Furthermore, nano-chelated fertilizers mitigated the impact 

of water-deficit stress through the chlorophyll a and b content while reducing leaf 

temperature.  

Conclusion: our results indicated that nano-chelating-based macronutrient 

fertilizers could present a promising avenue within sustainable production 

systems, particularly under water-deficit stress conditions. Therefore, 

considering production costs and environmental problems, the application of 

nano-chelated N20P20K20 96 kg/ha + nano-chelated nitrogen 126 L/ha for the 
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sustainable production of grain yield in the Fajr cultivar of maize will be 

sufficient, and higher levels of nano-fertilizers will be luxurious. 
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Introduction 

Drought stress is a critical obstacle to food security (Younas et al. 2022; Bakhoum et al. 2023). Also, 

it is the most limiting factor in the production of crops worldwide, especially maize (Henry et al. 

2016; Bodnár et al. 2018; Hunter et al. 2021). Enhancing crop tolerance to drought stress is thus 

imperative for ensuring food security. However, the level of stress tolerance depends on various 

factors such as stress type and duration, plant species, varieties, and plant nutrition (Wang et al. 2017; 

Bakhoum et al. 2022; Hanafy and Sadak 2023). In a research, it was found that interruption in 

irrigation during the reproductive phase in maize led to elevated leaf temperature and protein level, 

simultaneously resulting in reduced leaf water content, moisture stress index, chlorophyll 

concentration, leaf area index, and yield of grain, oil, and protein (Ghassemi Golezani and Mousavi 

2022). According to Ghassemi et al. (2020), drought stress considerably reduced the ear length, the 

number of kernels per ear, the number of kernel rows per ear, the number of kernels per row, the dry 

weight of husks, the 300-kernel weight, and the grain yield in maize. 

Nutrition plays a fundamental role in plant growth and development. By enhancing the nutrient 

content, plants are encouraged to express their full potential regarding yield and secondary 

metabolites (El Omari et al. 2016). However, under drought-stress conditions, factors such as reduced 

soil moisture restrict nutrient accessibility and root absorption (Jose 2023). Therefore, efficient 

regulation of plant nutrients through accurate and balanced fertilization management helps increase 

crop productivity, achieve sustainable agriculture, improve plant tolerance to water deficits, and 

enrich soil fertility by increasing soil organic matter availability (Alzreejawi and Al-Juthery 2020; 

Younas et al. 2022). 

Recently, the application of nanotechnology in agriculture has garnered attention due to its 

potential to augment agricultural production, increase input efficiency, and minimize associated risks 

(Shang et al. 2019; Sadak et al. 2022). For example, soil fertility is continuously reduced by the 

application of chemicals. Only a small fraction of these agrochemical inputs are used by plants, and 
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the rest are unused chemicals that are detrimental to the ecosystem. The unused chemical fertilizers 

and pesticides are washed into the soil or carried by water into water bodies, causing chemical 

pollution to non-target organisms. The application of nanotechnology in agriculture reduces the cost 

of fertilizers and pesticides with the advancement of these tools. The application of nanotechnology-

based techniques improves the properties of agricultural inputs such as targeted delivery, controlled 

release, solubility, and shelf life. These features not only make them more productive but also 

decrease the risk of environmental pollution (Chhipa 2019). 

Nano-fertilizers characterized by high surface area, sorption capacity, and controlled-release 

kinetics to targeted sites, act as intelligent delivery systems, potentially boosting crop growth, 

conserving energy, and facilitating more efficient food production (Rameshaiah et al. 2015). These 

nano-fertilizers efficiently provide the bioavailable elements for plant use, reducing the leaching of 

mobile nutrients such as nitrate. This advantage and the controlled release of nutrients make them 

more cost-effective (Kah et al. 2018; Tarafder et al. 2020). Also, the substantial loss of applied 

fertilizers in the soil, ranging from 50 to 80% (with an efficiency of 20 to 50%), resulting in ecological 

issues such as diminished soil fertility and economic losses, is addressed through the use of nano-

fertilizers (Ditta and Arshad 2016).  

This study aimed to provide original evidence on the impact of nano-chelated fertilizers on maize 

growth and productivity under water-deficit stress. 

 

Materials and Methods 

Experimental site 

The present study was conducted at the Agricultural Research Center, West-Azerbaijan (Saatloo 

Station), Iran, located at 45° 10′ 53˝ E and 37° 44′ 180˝ N, and 1338 m above sea level. Supplementary 

Table 1 presents the climatic features of the study area. The soil used for the experiment had a clay 

loam texture, a pH of about 8.3, and an electrical conductivity of about 0.8 S m-1 (Supplementary 

Table 2).  

 

Experimental design  

The research was conducted as a split-plot design based on the randomized complete block design 

with three replications. The main factor included optimum (irrigation after 70 mm evaporation from 

the class A evaporation pan) and deficit irrigation (irrigation after 140 mm evaporation from the class 

A evaporation pan) and the sub-factor consisted of five combinations of nano-chelated fertilizers with 

varying amounts and a chemical fertilizer treatment as the control (Table 1). Fertilizers were applied  



150                        Gholinezhad et al.                                                                           2024, 14(2): 147-167 

Table 1. Fertilizer treatments used in the experiment in 2019. 

Fertilizer Before sowing 4 to 5-leaf stage 6 to 8-leaf stage Tasseling stage 

Chemical fertilizers Triple superphosphate 

(300 kg/ha) + potassium 

sulfate (150 kg/ha) 

Urea (130 kg/ha) Urea (130 kg/ha) Urea (130 kg/ha) 

N20P20K20 (160 kg/ha) + N 

(210 L/ha, containing 

17% N) (nano-fertilizer 1) 

N20P20K20 (40 kg/ha) N20P20K20 (40 kg/ha) + 

N (70 L/ha) 

N20P20K20 (40 kg/ha) + 

N (70 L/ha) 

N20P20K20 (40 kg/ha) + 

N (70 L/ha) 

N20P20K20 (128 kg/ha) + 

N (168 L/ha, containing 

17% N) (nano-fertilizer 2) 

N20P20K20 (32 kg/ha) N20P20K20 (32 kg/ha) + 

N (56 L/ha) 

N20P20K20 (32 kg/ha) + 

N (56 L/ha) 

N20P20K20 (32 kg/ha) + 

N (56 L/ha) 

N20P20K20 (96 kg/ha) + N 

(126 L/ha, containing 

17% N) (nano-fertilizer 3) 

N20P20K20 (24 kg/ha) N20P20K20 (24 kg/ha) + 

N (42 L/ha) 

N20P20K20 (24 kg/ha) + 

N (42 L/ha) 

N20P20K20 (24 kg/ha) + 

N (42 L/ha) 

N20P20K20 (64 kg/ha) + N 

(84 L/ha, containing 17% 

N) (nano-fertilizer 4) 

N20P20K20 (16 kg/ha) N20P20K20 (16 kg/ha) + 

N (28 L/ha) 

N20P20K20 (16 kg/ha) + 

N (28 L/ha) 

N20P20K20 (16 kg/ha) + 

N (28 L/ha) 

N20P20K20 (32 kg/ha) + N 

(42 L/ha, containing 17% 

N) (nano-fertilizer 5) 

N20P20K20 (8 kg/ha) N20P20K20 (8 kg/ha) + 

N (14 L/ha) 

N20P20K20 (8 kg/ha) + 

N (14 L/ha) 

N20P20K20 (8 kg/ha) + 

N (14 L/ha) 

 

through fertigation. Water-deficit stress was imposed from the two to four-leaf stages after the plants 

were fully established. Figure 1 displays the FTIR spectrum graph of nano-chelated nitrogen and 

nano-chelated NPK fertilizers. As the graph shows, there are no peaks in the 13.84 m-1 and 8.25 m-1 

regions. These two regions belong to nitrate-nitrogen groups. One of the structural advantages of 

nano-chelated nitrogen and NPK 20-20-20 fertilizers is the absence of nitrate-nitrogen in their 

structure. 

      Irrigation was performed using 0.076 m polyethylene pipes. The amount of irrigation water for 

each plot was calculated according to the following formula:  

                                        I=W × D × f × 10000                                                                    

Where I = the amount of water that should be given in each irrigation (m3 ha-1). 

W = water storage capacity per cubic meter of soil (in the clay loam soil), 

D = the depth of root development or the desired depth for wetting the soil, which should be 20 cm 

more than the depth of root development (0.7 m in this experiment). 

f = easily accessible water coefficient that the plant can absorb water from the soil by its roots (0.5 in 

this study). Eight irrigations were carried out for the optimal irrigation treatment, while five rounds 

of irrigation were applied in the water-deficit stress treatments. The sowing of seeds was performed 

on 24 and 25 Jun 2019. Harvesting occurred in the first half of October (3 to 7 October) 2019. 
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Measured traits 

Yield and yield components: To determine the biomass and its components, randomly taken samples 

were weighed after incubated at 72 °C for 48 hours. Afterward, the dry weight of the stems, leaves, 

ears, and cobs were measured separately. 

The grain yield, which comprised of several components (i.e., the numbers of rows per ear, 

number of kernel rows, number of kernels per ear, and 1000-grain weight) were measured on 10 

central selected ears (from a two m2 area and extrapolating the results to tons per ha) (Karmollachaab 

et al. 2017).  

 

Harvest index: The harvest index (HI) was calculated as follows: 

HI=
GY

BY
 × 100 

Where GY and BY are grain yield and biomass, respectively.  

 

Nitrogen use efficiency based on grain yield and biomass: The following equations were used to 

calculate the nitrogen use efficiency (NUE) based on grain yield and biomass (Bingham et al. 2012): 

NUEG =
GY

N
 

NUEB =
𝐵𝑌

N
 

Where NUEG and NUEB are nitrogen use efficiency based on grain yield (kg/kg), and biomass (kg/kg), 

respectively, and N is the amount of applied nitrogen (kg/ha).  

 

Oil percentage (%): The oil percentage of grains was measured using a seed analyzer (model Zx880 

Near Infrared Food Analyzer, Berlin, Germany).  

 

Plant height: The height of 10 randomly selected plants in each plot was measured by considering 

the distance from the ground surface to the end of the stem. 

 

Stem diameter: The stem diameter of 10 randomly selected plants in each plot was measured by a 

caliper. 

 

Ear height: Ear height was determined by measuring the distance from the soil surface, to the node 

of the upper ear in 10 randomly selected plants from the central rows of the experimental plots. 
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Ear length and diameter: Ten randomly selected ears in each plot were measured for their length 

and diameter using a ruler and a Vernier Caliper, respectively. 

 

Grain depth: The following equation was used to calculate the depth of grains by  using 10 randomly 

chosen ears  (Khodarahmpour et al. 2012):   

Grain depth = (ear diameter - cob diameter)/2 

 

Relative water content: First, the fresh leaf samples were submerged in distilled water. Then, their 

fresh weight was determined. Next, they were re-weighed after 24 hours. After that, the leaves were 

dried at 70 ºC for 48 hours and weighed again. The relative water content (RWC) was calculated 

according to the following equation (Dhopte and Livera-M 2002): 

RWC= (FW-DW)/(TW-DW) × 100 

Where FW is the fresh weight, DW is the dry weight, and TW is the turgor weight of the leaf samples. 

 

Proline content: Proline content was determined from 0.2 g samples of fresh leaves based on 

proline’s reaction with ninhydrin (Bates et al. 1973; Anjum et al. 2017). 

 

Chlorophylls a and b: As specified by Arnon (1949), one g fresh leaf was used to extract the 

pigments. Extraction was performed by adding 10 ml of 80% acetone. The extract was centrifuged at 

5000–10000 rev min-1 for 5 min to separate the supernatants. This step was repeated until a clear 

upper liquid phase was acquired. The following equations were used to calculate the contents of 

chlorophyll a (Chl a) and chlorophyll b (Chl b) (mg/g FW). 

                                                           

                                                            

Where V is the final volume of solution (ml) and W represents the sample weight (g); D indicates the 

absorbance level at the considered wavelengths (nm). 

 

SPAD: The SPAD index was determined for 10 randomly selected leaves from each plot using a 

chlorophyll meter (Konica Minolta Model 502, Tokyo, Japan). 

 

Carotenoid content: The amount of carotenoids was measured according to Voronin’s method 

(Lichtenthaler 1987; Voronin et al. 2019) as follows:  
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C = 
(100 × 𝐴470−1.82 × 𝐶ℎ𝑙𝑎−85.02 × 𝐶ℎ𝑙𝑏)

198
                                                         

Where C is the content of carotenoids (mg g-1 FW) and A470 is the absorbance level at 470 nm 

wavelength. 

 

Electrolyte leakage: For calculating the electrolyte leakage, fresh leaves (100 mg) were washed three 

times using distilled water and soaked in distilled water for one hour (25 ºC). Then, the electrical 

conductivity was measured by a conductivity meter (L1). The container was then placed in a hot water 

bath (Bain-marie) for 10 min at 100 °C and its electrical conductivity was again determined (L2) (Bai 

et al. 1996). Leaf electrolyte leakage was calculated as follows: 

EL =
L1

L2
 × 100                                                                                          

Where EL, L1, and L2 represent the electrolyte leakage, the electrical conductivity of the fresh leaves 

at 25 ºC, and the electrical conductivity of the fresh leaves at 100 ºC, respectively.  

 

Leaf temperature: Leaf temperature was measured in the field (at 12 to 2 pm) using an infrared 

thermometer (model 8889, AZ company, Taichung, Taiwan) (Costa-Filho et al. 2020). 

 

Statistical analysis 

The homogeneity of error variances was tested using the Bartlett test. To normalize the error residuals 

of all traits, those with nonnormal distribution were transformed using an appropriate transformation 

procedure in SPSS software (Ver. 22, New York, USA). The analysis of variance was performed by 

SAS software (Ver. 9.1). Means were compared by Tukey’s test at a 5% significance level using 

MSTATC software. 

 

Results 

The analysis of variance (Supplementary Table 3) showed that irrigation affected ear height, plant 

height, stem diameter, ear length, ear diameter, number of kernels per row, number of kernels per ear, 

1000-kernel weight, ear dry weight, and NUEG. Also, nano-chelated fertilizers affected stem 

diameter, ear length, ear diameter, number of rows per ear, number of kernels per row, number of 

kernels per ear, 1000-kernel weight, dry weight of stems and leaves, ear dry weight, biomass, grain 

yield, harvest index, NUEG, and NUEB. The interaction of irrigation with nano-chelated fertilizers for 

ear length, dry weight of stems and leaves, harvest index, NUEG, and NUEB was also significant.   
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The water-deficit stress significantly reduced stem diameter, ear diameter, ear height, plant 

height, ear dry weight, number of kernels per row, number of kernels per ear, 1000-kernel weight, 

and grain yield compared to the plants under optimal irrigation (Table 2). The greatest grain yield 

(8.00 t/ha) resulted from the optimal irrigation conditions (Table 2). Treatment 3 of the nano-chelated 

fertilizers (nano-chelated N20P20K20 96 kg/ha + nano-chelated nitrogen 126 L/ha) significantly 

increased stem diameter, ear diameter, number of rows per ear, number of kernels per row, number 

of kernels per ear, 1000-kernel weight, ear dry weight, biomass, and grain yield compared to the 

application of chemical fertilizers on the average of irrigation conditions (Table 3). This fertilizer also 

showed higher ear length and the dry weight of stems and leaves than the chemical fertilizer under 

both optimum irrigation and water-deficit stress conditions, but the difference in ear length was not 

significant under water-deficit stress conditions (Table 4). The highest grain yield (8.47 t/ha) was 

associated with this fertilizer (Table 3). 

Irrigation, nano-chelated fertilizer, and their interaction affected RWC, proline, chlorophyll a, 

chlorophyll b, SPAD, carotenoids, and leaf temperature. However, the electrolyte leakage was only 

affected by the main effects of irrigation and nano-chelated fertilizer (Supplementary Table 4).  

Water-deficit stress decreased RWC, chlorophyll a, chlorophyll b, and SPAD, but increased 

proline, leaf temperature, carotenoids (Table 5), and electrolyte leakage (Table 2), but the increase in 

the carotenoid content was only significant concerning nano-fertilizer 1 and nano-fertilizer 3. Under 

optimum irrigation and water-deficit stress conditions, the application of nano-chelated fertilizer 

Treatment 3 increased RWC, chlorophyll a, chlorophyll b, and SPAD, but reduced proline content 

compared to chemical fertilizer application (Table 5), however, the difference was not significant 

concerning chlorophyll b in the water-deficit stress conditions, and SPAD in the optimal irrigation 

conditions. Also, this fertilizer had significantly lower leaf temperature than the control under water-

deficit stress conditions (Table 5), and significantly lower electrolyte leakage on the average of both 

irrigation conditions (Table 3).  

Mean comparisons concerning the interaction of irrigation with nano-chelated fertilizers showed 

that under water-deficit stress and normal conditions, the highest NUE based on grain yield and 

biomass was obtained from applying nano-chelated fertilizer No. 5 (Table 4). The highest (515.15 

kg.kg-1) and the lowest (29.84 kg.kg-1) NUE based on grain yield was obtained from applying nano-

chelated fertilizer 5 under optimum irrigation, and applying chemical fertilizer under water-deficit 

stress conditions, respectively (Table 4). Under optimum irrigation and water-deficit stress 

conditions, applying nano-chelated fertilizer Treatments 5, 4, 3, 2, and 1 increased NUE based on 
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grain yield by 1200, 590, 500, 290, and 210% compared to chemical fertilizer, respectively (Table 4). 

These results highlight the superiority of the nano-chelated fertilizers for NUE.  

 

   Table 2. Mean comparison of different levels of irrigation for agronomic traits and electrolyte leakage in maize.  

Irrigation Stem 

diameter 

(mm) 

Ear 

diameter 

(mm) 

Ear  

height 

(cm) 

Plant 

 height 

(cm) 

Ears dry  

weight  

(t/ha) 

Biomass 

(t/ha) 

Optimum irrigation 27.4a 48.9a 87.4a 

 

194.4a 

 

9.45a 15.52a 

Water-deficit stress 25.8b 45.5b 75.5b 167.5b 7.43b 12.48b 

 

 
   Table 2 continued 

Irrigation Grain yield  

(t/ha) 

No. of kernels 

per row 

No. of kernels 

per ear 

1000-kerenel 

weight 

(g) 

Electrolyte 

leakage 

 (%) 

Optimum irrigation 8.00a 36.48a 570.88a 199.09a 56.58b 

Water-deficit stress 6.11b 32.11b 471.74b 182.67b 67.93a 

   Means in each column with different letters are significantly different at 5% probability level based on the analysis of variance. 

 

 

Discussion 

The constant increase in the world population and the escalating rate of land degradation call for 

increasing yield per unit area of arable land (Senapati et al. 2019). However, stable crop production 

is adversely affected by various biotic and abiotic stresses, especially drought (Langridge 2013; 

Henry et al. 2016; El-Bassiouny et al. 2023). Therefore, improving crop tolerance to drought stress 

through adaptive strategies is critical to ensure food security. To achieve optimum yield without 

increasing the area of cultivated land, which is economically and ecologically restricted, attention 

must be paid to developing novel and efficient technologies to improve important traits related to 

plant productivity and its adaptation to environmental challenges.  

In our study, water-deficit stress significantly reduced yield and yield components. Similar to 

our findings, other researchers reported that yield and yield components of maize decreased under 

drought stress conditions (Afzali et al. 2023). The number of kernels per ear is a crucial yield 

component sensitive to water scarcity (Schussler and Westgate 1991). Also, under water-deficit 

stress, 1000-grain weight, and dry weight decline following the decrease in photosynthesis rate and 

transporters activity (Kang et al. 2000; Sajedi and Sajedi 2009; Hasanzade et al. 2014). Eskandari et 

al. (2019) indicated that the impact of water deficit on the 1000-seed weight of maize was more  
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Table 3. Mean comparison of different nano-chelated fertilizers for agronomic traits and electrolyte leakage in maize.  

Nano-fertilizer Stem diameter 

(mm) 

Ear diameter 

(mm) 

No. of rows per 

ear 

Ear DW  

 (t/ha) 

Biomass 

(t/ha) 

Control  27.6b 46.5de 14.63b 7.50de 12.71cd 

Nano-fertilizer 1 27.0bc 47.6bc 15.09b 8.90bc 14.55b 

Nano-fertilizer 2 26.2cd 47.8b 15.33ab 9.09b 14.79b 

Nano-fertilizer 3 29.1a 48.7a 16.21a 10.00a 16.46a 

Nano-fertilizer 4 25.2de 46.8cd 14.78b 8.05cd 13.42c 

Nano-fertilizer 5 24.6e 45.9e 14.66b 7.09e 12.07d 

 

Table 3 continued 

Nano-fertilizer Grain yield 

(t/ha) 

No. of kernels 

per row 

No. of kernels 

per ear 

1000-kerenel 

weight 

(g) 

Electrolyte 

leakage (%) 

Control  6.38cd 31.83cd 467.00c 199.01b 66.71b 

Nano-fertilizer 1 7.39b 34.19bc 517.62bc 181.10cd 60.92d 

Nano-fertilizer 2 7.49b 35.60b 546.79b 176.77d 57.72e 

Nano-fertilizer 3 8.47a 39.32a 640.15a 213.38a 53.96f 

Nano-fertilizer 4 6.63c 33.30bcd 494.35bc 191.32bc 64.25c 

Nano-fertilizer 5 5.97d 31.5d 461.95c 183.71cd 69.98a 

Means in each column followed by different letter(s) are significantly different at 5% probability level according to Tukey’s Test; 

Nano-fertilizer 1: N20P20K20 (160 kg/ha) + N (210 L/ha), Nano-fertilizer 2: N20P20K20 (128 kg/ha) + N (168 L/ha), Nano-fertilizer 

3: N20P20K20 (96 kg/ha) + N (126 L/ha), Nano-fertilizer 4: N20P20K20 (64 kg/ha) + N (84 L/ha) and Nano-fertilizer 5: N20P20K20 

(32 kg/ha) + N (42 L/ha). The details of nano-fertilizer treatments are shown in Table 1. 

 

than on other yield components of the crop. Consistent with other researchers (Sajedi et al. 2009), the 

results of the present study showed that water-deficit stress significantly decreased stem diameter, 

dry weight of stems and leaves, and plant height of maize  It has been indicated that under water 

deficit, the secretion of cytokinin from the roots is reduced, resulting in reduced cell division and 

limited plant height (Lalinia et al. 2012). According to Danilevskaya et al. (2019), water-deficit stress 

effectively decreases ear growth and yield. The supply of photosynthetic material to plant tissues 

decreases under water-deficit stress. Therefore, insufficient translocation of photosynthates to sinks 

during water-deficit stress periods, hinders their growth.  

In the present study, water-deficit stress reduced chlorophyll a, chlorophyll b, chlorophyll index, 

and RWC compared with normal irrigation. Similarly, another study reported that delayed irrigation 

reduced chlorophyll b content in maize compared to normal irrigation (Sarrafi et al. 2017). A possible 

explanation for the decrease in the chlorophyll index under water-deficit stress conditions is the 

production of  free radicals  during water-deficit stress that deteriorate chlorophylls  (Tarighaleslami  
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Table 4. Interaction of different levels of irrigation and nano-chelated fertilizers on the dry weight of stem and leaves,  

harvest index, ear length, and nitrogen use efficiency in maize. 

Means in each column followed by different letter(s) are significantly different at 5% probability level according to Tukey’s Test; DW: 

Dry weight, NUEG:  Nutrient use efficiency based on grain yield, NUEB: Nutrient use efficiency based on biomass;  Nano-fertilizer 1: 

N20P20K20 (160 kg/ha) + N (210  L/ha), Nano-fertilizer 2: N20P20K20 (128  kg/ha) + N (168  L/ha), Nano-fertilizer 3: N20P20K20 (96  

kg/ha) + N (126  L/ha), Nano-fertilizer 4: N20P20K20 (64  kg/ha) + N (84  L/ha) and Nano-fertilizer 5: N20P20K20 (32 kg/ha) + N (42  

L/ha). The details of nano-fertilizer treatments are shown in Table 1. 
 

et al. 2017). Neisani et al. (2012) also stated that water-deficit stress significantly reduces RWC due 

to the accumulation of soluble carbohydrates under more negative soil water potential. Additionally, 

Nasrollahzade et al. (2018) reported that the RWC of maize was reduced by 20% under water-deficit 

stress, compared to regular irrigation.  

Our findings in this research showed that water-deficit stress caused a decrease in grain yield and 

yield components but some nano-chelated fertilizers, especially treatment 3, significantly increased 

them as compared to the chemical fertilizer. Other studies have shown that nano-chelated fertilizers 

efficiently improve crop quality and quantity under unfavorable conditions such as drought.  For 

example, a study by Astaneh et al. (2018) using nano-chelated nitrogen fertilizers under optimum 

irrigation and water-deficit stress conditions, effectively improved wheat grain yield and yield-related 

characteristics compared to conventional urea. Zaky et al. (2022) reported that applying mineral NPK 

along with nano-NPK produced maximum grain yield. They stated that reducing the consumption of 

chemical fertilizers reduces environmental pollution. Zahedifar and Zohrabi (2016) showed that using 

nano-chelated potassium fertilizer improves seed germination under drought-stress conditions.  

Irrigation Nano-chelated 

fertilizers 

DW of stem 

and leaves 

(t/ha) 

Harvest 

index  

(%) 

Ear 

 length 

(mm) 

NUEG NUEB 

Optimum irrigation 

Control 5.59c-f 52.18a 198cde 39.57h 76.20h 

Nano-fertilizer 1 6.13bc 52.58a 205bcd 124.14f 236.91fg 

Nano-fertilizer 2 6.39b 50.79ab 216ab 155.96e 307.80ef 

Nano-fertilizer 3 7.26 a 52.55a 229a 236.62d 448.59d 

Nano-fertilizer 4 5.77bcd 50.82ab 199cde 270.85c 536.36c 

Nano-fertilizer 5 5.27d-g 51.87ab 193de 515.15a 996.62a 

Water-deficit stress 

Control  4.83fg 48.09bc 195cde 29.84h 62.02h 

Nano-fertilizer 1 5.16d-g 48.90abc 200cde 94.37g 192.94g 

Nano-fertilizer 2 5.01d-g 50.70ab 201b-e 120.81fg 238.43fg 

Nano-fertilizer 3 5.65b-e 50.46abc 208bc 180.82e 358.32e 

Nano-fertilizer 4 4.96fg 48.14bc 197cde 219.18d 455.16d 

Nano-fertilizer 5 4.68g 46.66c 189e 367.24b 787.30b 
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Means in each column followed by the same letter(s) are not significantly different at 5% probability level according to Tukey’s Test; 

RWC: Relative water content, Chla:  Chlorophyll a, Chl b: Chlorophyll b; Chl index: Chlorophyll index; Car: Carotenoids; Leaf Temp: 

Leaf temperature; Nano-fertilizer 1: N20P20K20 (160 kg/ha) + N (210 L/ha), Nano-fertilizer 2: N20P20K20 (128 kg/ha) + N (168 

L/ha), Nano-fertilizer 3: N20P20K20 (96 kg/ha) + N (126 L/ha), Nano-fertilizer 4: N20P20K20 (64 kg/ha) + N (84 L/ha) and Nano-

fertilizer 5: N20P20K20 (32 kg/ha) + N (42 L/ha). The details of nano-fertilizer treatments are shown in Table 1. 

 

Potassium has a role in anti-stress activity, enhancing plant resistance to water deficit and 

alleviating the negative impacts of this stress (Bahrami-Rad and Hajiboland 2017; Zahoor et al. 

2017). The positive effects of potassium on maize yield and yield components are due to better 

absorption of nano-chelated fertilizers that enable the nutrient to perform its vital roles in the plant. 

Potassium plays a critical role in changing xylem sap hydraulic conductance and water dynamics in 

plants (Nardini et al. 2010; Oddo et al. 2011). Potassium increases leaf dry weight, shoot growth, and 

grain yield by regulating water use efficiency, increasing root growth, and increasing cell division 

(Amanullah et al. 2016). Supplying potassium to plants regulates the proper functioning of the 

stomata resulting in an enhanced carbon dioxide stabilization rate. Thus, an increase in the number 

of grains and grain yield with potassium intake can be explained by the role of potassium in increasing 

carbohydrate production and its rapid transfer to grains (Pettigrew 2008; Hasanuzzaman et al. 2018). 

Furthermore, Fakharzadeh et al. (2020) reported that utilizing nano-chelated iron fertilizer in paddy 

rice increased yield-related traits and bio-fortified white rice with iron. In addition, El-Bassiouny et 

al. (2020) stated that using nano-zinc in wheat enhanced growth and productivity.  

Applying nano-chelated fertilizers (especially as the formulation in treatment 3) under normal 

irrigation and water-deficit stress, improved chlorophyll a, chlorophyll b, SPAD, and RWC in 

Irrigation Nano-chelated 

fertilizer 

RWC 

(%) 

Proline 

(µmol/kg 

DW) 

Chl a 

(mg/g 

FW) 

Chl b 

(mg/g 

FW) 

Chl 

 index 

(SPAD) 

Car 

 (mg/g 

FW) 

Leaf 

Temp 

(°C) 

Optimum 

irrigation 

Control 63.74c 93.42def 2.24e 0.99cd 52.96abc 1.31c 16.70ef 

Nano-fertilizer 1 71.86b 63.61g 2.63c 1.17bc 58.33a 1.18c 16.10f 

Nano-fertilizer 2 78.36a 62.52g 2.77b 1.32ab 56.64a 0.80c 16.03f 

Nano-fertilizer 3 80.86a 54.87 g 2.91a 1.44a 59.43a 1.71abc 15.63f 

Nano-fertilizer 4 64.94c 74.27efg 2.42d 1.18bc 54.40ab 1.29c 16.26f 

Nano-fertilizer 5 62.30c 105.23bcd 2.20e 0.91d 49.16bcd 1.40bc 16.76ef 

Water-

deficit 

stress 

Control 47.70f 131.60b 1.18i 0.43e 29.63f 1.66abc 18.86ab 

Nano-fertilizer 1 50.83e 116.83bcd 1.31h 0.59e 41.93de 2.34ab 18.00bcd 

Nano-fertilizer 2 55.80d 100.96cde 1.42g 0.62e 41.20e 1.38bc 17.63cde 

Nano-fertilizer 3 57.30d 66.21fg 1.60f 0.63e 46.86cde 2.42a 17.33de 

Nano-fertilizer 4 45.63fg 122.03bc 1.27h 0.54e 32.46f 1.52abc 18.53bc 

Nano-fertilizer 5 43.66g 168.54a 1.14i 0.48e 27.83f 1.24c 19.59a 

Table 5. Interaction of different levels of irrigation and nano-chelated fertilizers on physiological characteristics in maize. 
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comparison to chemical fertilizer application. Vegetative growth and chlorophyll content are 

influenced by macro-nutrient absorption, especially nitrogen as an essential part of the chlorophyll 

molecule and phosphorus, essential for supplying ATP for chlorophyll production (Ye et al. 2019).  

Based on our findings, nano-chelated fertilizers appear to be more efficient in supplying essential 

macronutrients to plants than chemical fertilizers. The greater efficiency of nano-chelated fertilizers 

in nutrient transfer enables smaller quantities of these inputs to enhance agronomic traits, chlorophyll 

content, and RWC compared to chemical fertilizers. Similar to our results, in the studies by Mir et al. 

(2015) and Ghahremani et al. (2014), applying nano-chelated potassium significantly improved the 

chlorophyll content. In addition, Astaneh et al. (2018) showed improvement in chlorophyll content 

of wheat under nano-chelated nitrogen treatments compared to urea.  

Water-deficit stress increased proline content but the significant increase in carotenoid content was 

limited to nano-fertilizers 1 and 3.  Carotenoids are a group of large isoprenoid molecules that play 

an essential role in photosynthesis and light protection. These compounds are divided into carotene 

hydrocarbons such as lycopene, beta-carotene, or xanthophyll. Two essential functions of carotenoids 

are the protection of chlorophyll from light oxidation and the absorption and transmission of short-

wavelength photons onto chlorophyll a (Diedrick 2010). Studies have reported increasing the 

carotenoid content during drought stress (Dias et al. 2014). Moreover, research has shown that the 

amount of proline amino acid production increases with drought-stress intensity. Proline 

accumulation helps the plants resist the stress and maintain a suitable turgor pressure during drought 

stress (Soltani et al. 2012).  

In the current study, water-deficit stress increased leaf temperature and electrolyte leakage. It 

seems that water-deficit stress affects stomata conductance and decreases the intra-tissue water 

content of leaves. The decrease in water content raises the canopy temperature. Canopy temperature 

has been shown to increase with longer irrigation intervals (Jahan et al. 2013). In addition, it has been 

reported that drought stress causes an increase in ion leakage to the extracellular space, with the 

increase being greater at 50% field capacity (Naghizadeh and Kabiri 2017).  

Farmers mainly use mineral fertilizers such as di-ammonium phosphate, urea, and chemical NPK 

to increase and sustain crop yield. However, the nutrients in these fertilizers are poorly utilized due 

to various environmental and soil-related factors such as P-fixation, leaching, and volatilization of 

NO3 and N2O. The low nutrient use efficiency and high nutrient loss concerning conventional 

chemical fertilizers are important obstacles to increasing crop production, plant resistance against 

abiotic stresses, and agroecosystem and groundwater safety (Wang et al. 2013; Puntel et al. 2016).  
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In the present study, NUE was significantly increased in all nano-chelated fertilizer treatments 

compared to the chemical fertilizer. Notably, applying only 222 kg of nano-chelated fertilizer 

(Treatment 5) compared to 840 kg of chemical fertilizer (control), increased grain yield by 33%. In 

addition, applying 1.3 t/ha of nitrogen in nano-chelated form (nano-chelated nitrogen and N20P20K20 

fertilizers) in treatment 5, resulted in an NUE of 515 and 367 under normal irrigation and drought 

stress, respectively. These were 13 and 12.6 times greater than the NUEs observed in control chemical 

fertilizers, respectively. Indeed, despite the smaller quantity of fertilizers used in all nano-chelated 

fertilizer treatments compared to chemical fertilizer, the superior nutrient absorption and efficiency 

in this form resulted in greater yields and improved NUE. Zareabyaneh and Bayatvarkeshi (2015) 

indicated that nano-chelating based on nitrogen fertilizer is more resistant to leaching, has greater 

nitrogen use efficiency, and induces more yield when compared to urea in potatoes.  

Increasing the amount of nano-chelated fertilizers significantly decreased NUE. This suggests an 

optimal level or limit for the performance of nano-chelated fertilizers. When the fertilizers are used 

below this threshold, they are effective in their intended purpose. However, if the threshold is 

exceeded, their effectiveness is hindered or reduced. It is important to note that even when used in 

quantities greater than the optimal level, nano-chelated fertilizers continue to outperform 

conventional chemical fertilizers. 

  

Conclusion 

This study found that water-deficit stress significantly reduced agronomic traits, especially grain yield 

and its components, photosynthetic pigments, RWC, and NUE. Contrarily, it increased proline 

content, carotenoids, leaf temperature, and electrolyte leakage. Application of nano-chelated 

fertilizers even in reduced amounts compared to chemical fertilizer, considerably enhanced maize 

agronomic traits, photosynthetic pigments, RWC, NUE, grain yield, and yield components while 

decreasing maize proline content, leaf temperature, and electrolyte leakage. The increased efficiency 

of such inputs enables the use of reduced doses of fertilizers that can reduce production costs and 

reduce the burden of chemical fertilizers on the environment. Lastly, replacing conventional chemical 

fertilizers with reduced doses of nano-chelated fertilizers improves the drought tolerance of the plants 

and facilitates the transition to sustainable agriculture in production systems. 
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