Document Type : Research Paper
Authors
Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
Abstract
Keywords
Main Subjects
Aghajanzadeh TA, Taheri Otaghsara SH, Jafari N, Khademian Amiri S. 2021. Physiological responses of Ulmus minor Mill. to ozone, carbon monoxide, and nitrogen dioxide in regions with different levels of atmospheric pollutants in Iran. J Plant Physiol Breed. 11(1): 49-62. https://doi.org/10.22034/JPPB.2021.13762
Ainsworth EA, Gillespie KM. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat Protoc. 2(4): 875-877. https://doi.org/10.1038/nprot.2007.102
Akkol EK, Göger F, Koşar M, Başer KHC. 2008. Total phenolic composition and biological activities of Salvia halophila and Salvia virgata from Turkey. Food Chem. 108(3): 942-949. https://doi.org/10.1016/j.foodchem.2007.11.071
Akkuzu E, Kaya Ü, Çamoğlu G, Mengü GP, Aşik Ş. 2013. Determination of crop water stress index and irrigation timing on olive trees using a handheld infrared thermometer. J Irrig Drain Eng. 139(9): 728-737. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000623
Alara OR, Abdurahman NH, Ukaegbu CI. 2021. Extraction of phenolic compounds: a review. Curr Res Food Sci. 4: 200-214. https://doi.org/10.1016/j.crfs.2021.03.011
Alayafi AAM. 2020. Exogenous ascorbic acid induces systemic heat stress tolerance in tomato seedlings: transcriptional regulation mechanism. Environ Sci Pollut Res. 27(16): 19186-19199. https://doi.org/10.1007/s11356-019-06195-7
Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24(1): 1-15. https://doi.org/10.1104/pp.24.1.1
Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39: 205-207. https://doi.org/10.1007/BF00018060
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1-2): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Davey MW, Van Montagu M, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJ J, John J Strain, Derek Favell, John Fletcher Fletcher J. 2000. Plant L‐ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric. 80(7): 825-860. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<825::AIDJSFA598>3.0.CO;2-6
Davies KM. 2018. An introduction to plant pigments in biology and commerce. In: Davies KM (ed.) Plant pigments and their manipulation. Annu Plant Rev. 14: 1-22. Oxford: Blackwell. https://doi.org/10.1002/9781119312994.apr0131
De Lima Nunes LR, Rayane Pinheiro P, Batista da Silva J, Dutra AS. 2020. Effects of ascorbic acid on the germination and vigour of cowpea seeds under water stress. Rev Ciênc Agron. 51(2): e20196629. https://doi.org/10.5935/1806-6690.20200030
DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem. 28(3): 350-356. https://doi.org/10.1021/ac60111a017
El-Beltagi HS, Sulaiman, Mohamed MEM, Ullah S, Shah S. 2022. Effects of ascorbic acid and/or α-tocopherol on agronomic and physio-biochemical traits of oat (Avena sativa L.) under drought condition. Agronomy. 12(10): 2296-2312. https://doi.org/10.3390/agronomy12102296
Elmastaş M, Dermirtas I, Isildak O, Aboul‐Enein HY. 2006. Antioxidant activity of S‐carvone isolated from spearmint (Mentha spicata L. Fam Lamiaceae). J Liq Chromatogr Relat Technol. 29(10): 1465-1475. https://doi.org/10.1080/10826070600674893
Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. 2009. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev. 29; 185-212. https://doi.org/10.1007/978-3-642-32653-0_1
Farooq M, Hussain M, Wahid, A, Siddique KHM. 2012. Drought stress in plants: an overview. In: Aroca R (eds.) Plant responses to drought stress. Springer: Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32653-0_1
Farooq M, Irfan M, Aziz T, Ahmad I, Cheema SA. 2013. Seed priming with ascorbic acid improves drought resistance of wheat. J Agron Crop Sci. 199(1): 12-22. https://doi.org/10.1111/j.1439-037X.2012.00521.x
Fatehi F, Hosseinzadeh A, Alizadeh H, Brimavandi T, Struik PC. 2012. The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol Biol Rep. 39(5): 6387-6397. https://doi.org/10.1007/s11033-012-1460-z
Foschi ML, Juan M, Pascual B, Pascual-Seva N. 2023. Influence of seed-covering layers on caper seed germination. Plants. 12(3): 439-455. https://doi.org/10.3390/plants12030439
Gharred J, Talbi O, Imed D, Badri M, Mohsen H, Ahmed D, Chedly A, Hans-Werner K, Slama I. 2023. Seed priming with ascorbic acid improves response of Medicago polymorpha L. seedlings to osmotic stress induced by NaCl and PEG solutions. Arid Land Res Manag. 37(2): 247-264. https://doi.org/10.1080/15324982.2022.2138633
He M, Dijkstra FA. 2014. Drought effect on plant nitrogen and phosphorus: a meta‐analysis. New Phytol. 204(4): 924-931. https://doi.org/10.1111/nph.12952
Hemmaty S, Hosseinzadeh R, Dilmaghani MR, Tagiloo R, Mohseniazar M. 2011. Effect of UV-C irradiation on phenolic composition of ‘Rishbaba’ table grape (Vitis vinifera cv. Rishbaba). J Plant Physiol Breed. 1(2): 29-38.
Hussein Z, Khursheed MG. 2014. Effect of foliar application of ascorbic acid on growth, yield components and some chemical constituents of wheat under water stress conditions. Jordan J Agric Sci. 10(1): 1-15.
Jahanbakhshi M, Sadeghi M, Tohidi M, Fotouhi F, Fazelzadeh SA. 2024. Efficacy of ascorbic acid as a cofactor to increase irrigation water-use efficiency (IWUE) and mung bean (Vigna radiata L.) yield. JAST. 26(3): 593-606. https://doi.org/10.22034/JAST.26.3.593
Kasim WA, Nessem AA, Gaber A. 2019. Effect of seed priming with aqueous extracts of carrot roots, garlic cloves or ascorbic acid on the yield of Vicia faba grown under drought stress. Pak J Bot. 51(6): 1979-1985. https://doi.org/10.30848/PJB2019-6(41)
Kumar S, Kaur R, Kaur N, Bhandhari K, Kaushal N, Gupta K, Bains TS, Nayyar H. 2011. Heat-stress induced inhibition in growth and chlorosis in mungbean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reduction in oxidative stress. Acta Physiol Plant. 33: 2091-2101. https://doi.org/10.1007/s11738-011-0748-2
MacDonald MT, Kannan R, Jayaseelan R. 2022. Ascorbic acid preconditioning effect on broccoli seedling growth and photosynthesis under drought stress. Plants. 11(10): 1324-1335. https://doi.org/10.3390/plants11101324
Matsui K, Nazifi E, Kunita S, Wada N, Matsugo S, Sakamoto T. 2011. Novel glycosylated mycosporine-like amino acids with radical scavenging activity from the cyanobacterium Nostoc commune. J Photochem Photobiol B: Biology. 105(1): 81-89. https://doi.org/10.1016/j.jphotobiol.2011.07.003
Michel BE, Kaufmann MR. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51(5): 914-916. https://doi.org/10.1104/pp.51.5.914
Mutale-Joan C, Redouane B, Najib E, Yassine K, Lyamlouli K, Laila S, Zeroual Y, Hicham EA. 2020. Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Sci Rep. 10(1): 2820. https://doi.org/10.1038/s41598-020-59840-4
Naumann G, Alfieri L, Wyser K, Mentaschi L, Betts RA, Carrao H, Spinoni J, Vogt J, Feyen L. 2018. Global changes in drought conditions under different levels of warming. Geophys Res Lett. 45(7): 3285-3296. https://doi.org/10.1002/2017GL076521
Nawaz M, Ashraf MY, Khan A, Nawaz F. 2021. Salicylic acid–and ascorbic acid–induced salt tolerance in mung bean (Vigna radiata (L.) Wilczek) accompanied by oxidative defense mechanisms. J Soil Sci Plant Nutr. 21(3): 2057-2071. https://doi.org/10.1007/s42729-021-00502-3
Omari Alzahrani F. 2021. Metabolic engineering of osmoprotectants to elucidate the mechanism (s) of salt stress tolerance in crop plants. Planta, 253(1), 24-41. https://doi.org/10.1007/s00425-020-03550-8
Park YJ, Park JE, Truong TQ, Koo SY, Choi JH, Kim SM. 2022. Effect of Chlorella vulgaris on the growth and phytochemical contents of “Red Russian” kale (Brassica napus var. Pabularia). Agronomy 12(9): 2138-2156. https://doi.org/10.3390/agronomy12092138
Rao MSS, Mendham NJ. 1991. Soil-plant-water relations of oilseed rape (Brassica napus and B. campestris). J Agric Sci. 117(2): 197-205. https://doi.org/10.1017/S002185960006528X
Razaji A, Farzanian M, Sayfzadeh S. 2014. The effects of seed priming by ascorbic acid on some morphological and biochemical aspects of rapeseed (Brassica napus L.) under drought stress condition. Int J Biosci. 4(1): 432-442. https://doi.org/10.12692/ijb/4.1.432-442
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 26(9-10): 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Ritchie SW, Nguyen HT, Holaday AS. 1990. Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop Sci. 30(1): 105-111. https://doi.org/10.2135/cropsci1990.0011183X003000010025x
Saedipour S. 2016. Role of exogenous application of auxin on antioxidant enzyme activities in rice under salt stress. J Plant Physiol Breed. 6(2): 49-61.
Salemi F, Nasr Esfahani M, Tran LSP. 2019. Mechanistic insights into enhanced tolerance of early growth of alfalfa (Medicago sativa L.) under low water potential by seed-priming with ascorbic acid or polyethylene glycol solution. Ind Crops Prod. 137: 436-445. https://doi.org/10.1016/j.indcrop.2019.05.049
Shafiq S, Akram NA, Ashraf M, Arshad A. 2014. Synergistic effects of drought and ascorbic acid on growth, mineral nutrients and oxidative defense system in canola (Brassica napus L.) plants. Acta Physiol Plant. 36: 1539-1553. https://doi.org/10.1007/s11738-014-1530-z
Smirnoff N. 2000. Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol. 3(3): 229-235. https://doi.org/10.1016/S1369-5266(00)80070-9
Sultana N, Ikeda T, Itoh R. 1999. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environ Exp Bot. 42(3): 211-220. https://doi.org/10.1016/S0098-8472(99)00035-0
Taiz L, Zeiger E. 2010. Plant Physiology. 5th edition. Sinauer Associates Inc.: Sunderland, Massachusetts, 782 p. https://doi.org/10.1086/658450
Trovato M, Forlani G, Signorelli S, Funck D. 2019. Proline metabolism and its functions in development and stress tolerance. In: Hossain MA et al. (eds.) Osmoprotectant-mediated abiotic stress tolerance in plants. Springer Nature: Cham, Switzerland, pp. 41-72. https://doi.org/10.1007/978-3-030-27423-8
Trouvelot S, Héloir MC, Poinssot B, Gauthier A, Paris F, Guillier C, Combier M, Trdá L, Daire X, Adrian M. 2014. Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Front Plant Sci. 5: 592. https://doi.org/10.3389/fpls.2014.00592
Uppalwar SV, Garg V, Dutt R. 2021. Seeds of mung bean (Vigna radiata (L.) R. Wilczek): taxonomy, phytochemistry, medicinal uses and pharmacology. Curr Bioact Compd. 17(3): 220-233. https://doi.org/10.2174/1573407216999200529114608
Yang A, Akhtar SS, Amjad M, Iqbal S, Jacobsen SE. 2016. Growth and physiological responses of quinoa to drought and temperature stress. J Agron Crop Sci. 202(6): 445-453. https://doi.org/10.1111/jac.12167
Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S. 2021. Response mechanism of plants to drought stress. Horticulturae. 7(3): 50. https://doi.org/10.3390/horticulturae7030050
Zehra A, Shaikh F, Ansari R, Gul B, Khan MA. 2013. Effect of ascorbic acid on seed germination of three halophytic grass species under saline conditions. Grass Forage Sci. 68(2): 339-344. https://doi.org/10.1111/j.1365-2494.2012.00899.x
Zulfiqar F. 2021. Effect of seed priming on horticultural crops. Sci Hortic. 286: 110197. https://doi.org/10.1016/j.scienta.2021.110197