Aalami A, Abdullahi Mandolakani B, Esfahani M, Mozaffari J. 2007. Assessment of genetic diversity in groundnut (Arachis hypogea L.) germplasm using morphological traits. Iran J. Crop Sci. 8(4): 357-367 (In Persian with English abstract).
Bizari EH, Val BHP, Pereira EDM, Mauro AOD, Uneda-Trevisoli SH. 2017. Selection indices for agronomic traits in segregating populations of soybean. Cienc Agron. 48(1): 110-117.
https://doi.org/10.5935/1806-6690.20170012
Burdon RD, Li Y. 2019. Genotype–environment interaction involving site differences in expression of genetic variation along with genotypic rank changes: simulations of economic significance. Tree Genet Genomes. 15: 2.
https://doi.org/10.1007/s11295-018-1308-3
Delacy IH, Basford KE, Cooper M, Bull JK, McLaren CG. 1996. Analysis of multi-environment trial: an historical perspective. In: Cooper M, Hammer GL (eds.). Plant adaptation and crop improvement. Wallingford, UK: CAB International, pp. 39-124.
Foundra MZ, Hernandez M, Lopez R, Fernandez L, Sánchez A, López J, Ravelo I. 2000. Analysis of the variability in collected peanut (Arachis hypogea L.) cultivars for the establishment of core collections. Plant Genet Resour Newsl. 137: 9-13.
Golaktya PR, Makne VG. 1991. Genetic diversity in Spanish bunch groundnut. J. Maharashtra Agric Univ. 16(3): 337-339.
Hemadesh I, Ahmadi J, Fabriki-Ourang S, Vaezi B. 2021. Appraising of barley promising lines relying on high grain yield and desirable agronomy traits in rainfed conditions using SIIG and ASIIG techniques. Iran J Genet Plant Breed. 10(1): 11-30.
https://doi.org/10.30479/IJGPB.2022.17153.1315
Henderson CR. 1984. Applications of linear models in animal breeding. Guelph, Ont.: University of Guelph.
Holland JB. 2006. Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop Sci. 46(2): 642-654.
https://doi.org/10.2135/cropsci2005.0191
Liu BH, Knapp S, Birkes D. 1997. Sampling distributions, biases, variances, and confidence intervals for genetic correlations. Theor Appl Genet. 94(1): 8-19.
https://doi.org/10.1007/s001220050375
Maranna S, Nataraj V, Kumawat G, Chandra S, Rajesh V, Ramteke R, Manohar Patel R, Ratnaparkhe MB, Husain SM, Sanjay Gupta S,
et al. 2021. Breeding for higher yield, early maturity, wider adaptability and waterlogging tolerance in soybean (
Glycine max L.): A case Study. Sci Rep. 11: 22853.
https://doi.org/10.1038/s41598-021-02064-x
Nobahar A, Mostafavi Rad M, Zakerin HR, Sayfzadeh S, Valadabady AR. 2019. Growth characteristics and seed yield of peanut (
Arachis hypogea L.) as affected by topping height and application methods of zinc and calcium nano chelates. Seed Plant Prod J. 35(2): 183-201 (In Persian with English abstract).
https://doi.org/10.22092/SPPJ.2020.122370.1041
Pour-Aboughadareh A, Sanjani S, Nikkhah-Chamanabad H, Mehrvar MR, Asadi A, Amini A. 2021. Identification of salt-tolerant barley genotypes using multiple-traits index and yield performance at the early growth and maturity stages. Bull Natl Res Cent. 45: 117.
https://doi.org/10.1186/s42269-021-00576-0
Safari P, Honarnezhad R, Esfahani M. 2008. Assessment of genetic variation in peanuts (
Arachis hypogaea L.) cultivars using canonical discriminant analysis. Iran J Field Crops Res. 6(2): 327-334 (In Persian with English abstract).
https://doi.org/10.22067/GSC.V6I2.2439
Samadi Gorji M, Mirabadi AZ, Forozzan K, Haghpanah M. 2019. Assessment of genetic diversity in groundnut (
Arachis hypogea L.) germplasm using morphological traits. Plant Genet Res. 5(2): 85-94 (In Persion with English abstract).
https://doi.org/10.29252/pgr.5.2.85
Solat Petloo N, Asghari Zakaria R, Ebadi A, Sharifi Ziveh P. 2022. Selection of cow cockle (
Vaccaria hispanica) ecotypes based on agronomic traits under different irrigation regimes. J Crop Breed. 14(43): 135-144. (In Persian with English abstract).
https://doi.org/10.52547/jcb.14.43.135
Vahedi I, Asghari Zakaria R, Zare N. 2023. Evaluation of salinity tolerance of cow cockle (
Vaccaria hispanica) ecotypes at germination and adult plant stages. J Plant Physiol Breed. 13(2): 43-60.
https://doi.org/10.22034/JPPB.2023.55239.1294
Vange T, Maga TJ. 2014. Genetic characteristics and path coefficient analysis in ten groundnut varieties (
Arachis hypogaea L.) evaluated in the Guinea Savannah agro-ecological zone. Afr J Agric Res. 9(25): 1932-1937.
https://doi.org/10.5897/AJAR2013.7340
Yue H, Olivoto T, Bu J, Li J, Wei J, Xie J, Chen S, Peng H, Nardino M, Jiang X. 2022a. Multi-trait selection for mean performance and stability of maize hybrids in mega-environments delineated using envirotyping techniques. Front Plant Sci. 13: 1-17.
https://doi.org/10.3389/fpls.2022.1030521
Yue H, Wei J, Xie J, Chen S, Peng H, Cao H, Bu J, Xuwen Jiang X. 2022b. A study on genotype-by-environment interaction analysis for agronomic traits of maize genotypes across Huang-Huai-Hai region in China. Phyton-Int J Exp Bot. 91(1): 57-81.
https://doi.org/10.32604/phyton.2022.017308
Zali H, Sofalian O, Hasanloo T, Asgharii A, Hoseini SM. 2015. Appraising of drought tolerance relying on stability analysis indices in canola genotypes simultaneously, using selection index of ideal genotype (SIIG) technique: introduction of new method. Biol Forum. 7(2): 703-711.