Abdelrhim AS, Mazrou YS, Nehela Y, Atallah OO, El-Ashmony RM, Dawood MF. 2021. Silicon dioxide nanoparticles induce innate immune responses and activate antioxidant machinery in wheat against Rhizoctonia solani. Plants. 10(12): 2758. https://doi.org/10.3390/plants10122758
Ashraf MPJC, Harris PJ. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166(1): 3-16. https://doi.org/10.1016/j.plantsci.2003.10.024
Daoud A, Hemada M, Saber N, El-Araby A, Moussa L. 2018. Effect of silicon on the tolerance of wheat (Triticum aestivum L.) to salt stress at different growth stages: case study for the management of irrigation water. Plants. 7(2): 29. https://doi.org/10.3390/plants7020029
De Curtis F, De Cicco V, Lima G. 2012. Efficacy of biocontrol yeasts combined with calcium silicate or sulphur for controlling durum wheat powdery mildew and increasing grain yield components. Field Crops Res. 134: 36-46. https://doi.org/10.1016/j.fcr.2012.04.014
Ghassemi-Golezani K, Lotfi R, Najafi N. 2015. Some physiological responses of mungbean to salicylic acid and silicon under salt stress. Adv Biores. 6(4): 7-13. https://doi.org/10.15515/abr.0976-4585.6.4.713
Gong H, Randall D, Flowers T. 2006. Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ. 29(10): 1970-1979. https://doi.org/10.1111/j.1365-3040.2006.01572.x
Gupta B, Huang B. 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics. 2014: 701596. https://doi.org/10.1155/2014/701596
Harper RJ, Dell B, Ruprecht JK, Sochacki SJ, Smettem KRJ. 2021. Salinity and the reclamation of salinized lands. In: Stanturf JA, Callaham MA. Soils and landscape restoration. Academic Press, pp. 193-208. https://doi.org/10.1016/B978-0-12-813193-0.00007-2
Javaid T, Farooq MA, Akhtar J, Saqib ZA, Anwar-ul-Haq M. 2019. Silicon nutrition improves growth of salt-stressed wheat by modulating flows and partitioning of Na+, Cl− and mineral ions. Plant Physiol Biochem 141: 291-299. https://doi.org/10.1016/j.plaphy.2019.06.010
Kumari R, Bhatnagar S, Mehla N, Vashistha A. 2022. Potential of organic amendments (AM fungi, PGPR, vermicompost and seaweeds) in combating salt stress– a review. Plant Stress. 6(4): 100111. https://doi.org/10.1016/j.stress.2022.100111
Li J, Cao X, Jia X, Liu L, Cao H, Qin W, Li M. 2021. Iron deficiency leads to chlorosis through impacting chlorophyll synthesis and nitrogen metabolism in Areca catechu L. Front Plant Sci. 12: 710093. https://doi.org/10.3389/fpls.2021.710093
Liang Y, Sun W, Zhu YG, Christie P. 2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147(2): 422-428. https://doi.org/10.1016/j.envpol.2006.06.008
Linjuan Z, Junping J, Lijun W, Min L, Fusuo Z. 1999. Effects of silicon on the seedling growth of creeping bentgrass and zoysiagrass. In: Datnoff LE, Snyder GH, Korndörfer GH (eds). Silicon in Agriculture. Elsevier Science: Amsterdam, The Netherlands, 381.
Lopez MV, Satti SME. 1996. Calcium and potassium-enhanced growth and yield of tomato under sodium chloride stress. Plant Sci. 114(1): 19-27. https://doi.org/10.1016/0168-9452(95)04300-4
Ma D, Sun D, Wang C, Qin H, Ding H, Li Y, Guo T. 2016. Silicon application alleviates drought stress in wheat through transcriptional regulation of multiple antioxidant defense pathways. J Plant Growth Regul. 35(1): 1-10. https://doi.org/10.1007/s00344-015-9500-2
Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z. 2016. Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci. 7: 876. https://doi.org/10.3389/fpls.2016.00876
Maleki M, Ghorbanpour M, Kariman K. 2017. Physiological and antioxidative responses of medicinal plants exposed to heavy metals stress. Plant Gene 11: 247-254. https://doi.org/10.1016/j.plgene.2017.04.006
Munns R, James RA, Läuchli A. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot .57(5): 1025-1043. https://doi.org/10.1093/jxb/erj100
Munns R, and Tester M. 2008. Mechanisms of salinity tolerance. Annual review of plant biology 59:651. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Parida AK, Das AB. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf. 60(3): 324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
Parihar P, Singh S, Singh R, Singh VP, Prasad SM. 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res. 22: 4056-4075. https://doi.org/10.1007/s11356-014-3739-1
Qin L, Kang WH, Qi YL, Zhang ZW, Wang N. 2016. The influence of silicon application on growth and photosynthesis response of salt stressed grapevines (Vitis vinifera L.). Acta Physiol Plant. 38(3): 68. https://doi.org/10.1007/s11738-016-2087-9
Sabaghnia N, Janmohammadi M. 2014. Graphic analysis of nano-silicon by salinity stress interaction on germination properties of lentil using the biplot method. Agriculture & Forestry/Poljoprivreda i Sumarstvo 60(3): 29-40.
Sabaghnia N, Janmohammadi M. 2015. Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes. Annales Universitatis Mariae Curie-Sklodowska, Sectio C–Biologia, p. 39-55. https://doi.org/10.1515/umcsbio-2015-0004
Sacala E, Durbajlo W. 2012. The effect of sodium silicate on maize growing under stress conditions. Przemysl Chem. 91(5): 949-951.
Shabala S, Munns R. 2017. Salinity stress: physiological constraints and adaptive mechanisms. Plant stress physiology: In: Shabala S (ed.). Plant stress physiology. CAB International: Oxford, pp. 59-93.. https://doi.org/10.1079/9781845939953.0059
Shahbazi S, Toorchi M, Moghaddam M, Aharizad S, Bandehhagh A. 2023. Effect of salinity stress on the root proteome pattern of spring bread wheat. J Plant Physiol Breed. 13(1): 119-139. https://doi.org/10.22034/jppb.2023.16406
Sienkiewicz-Cholewa U, Sumisławska J, Sacała E, Dziągwa-Becker M, Kieloch R. 2018. Influence of silicon on spring wheat seedlings under salt stress. Acta Physiol Plant. 40(3): 54. https://doi.org/10.1007/s11738-018-2630-y
Tahmasebi Shamansouri M, Enayatizamir N, Chorom M, Rahnama Ghahfarokhi A. 2018. Impact of biological and chemical treatments on the improvement of salt tolerance in wheat. J Plant Physiol Breed. 8(2): 121-134. https://doi.org/10.22034/jppb.2018.9807
Tanaka A, Tanaka R. 2006. Chlorophyll metabolism. Curr Opin Plant. 9(3): 248-255. https://doi.org/10.1016/j.pbi.2006.03.011
Tester M, Davenport R. 2003. Na+ tolerance and Na+ transport in higher plants. Ann Bot. 91(5): 503-527. https://doi.org/10.1093/aob/mcg058
Wang P, Grimm B. 2021. Connecting chlorophyll metabolism with accumulation of the photosynthetic apparatus. Trends Plant Sci. 26(5): 484-495. https://doi.org/10.1016/j.tplants.2020.12.005
Wang Y, Zhang B, Jiang D, Chen G. 2019. Silicon improves photosynthetic performance by optimizing thylakoid membrane protein components in rice under drought stress. Environ Exp Bot. 158: 117-124. https://doi.org/10.1016/j.envexpbot.2018.11.022
Watanabe S, Fujiwara T, Yoneyama T, Hayashi H. 2001. Effects of silicon nutrition on metabolism and translocation of nutrients in rice plants. In: Horst WJ, et al. Plant nutrition. Developments in Plant and Soil Sciences, vol 92. Springer: Dordrecht. https://doi.org/10.1007/0-306-47624-X_84
Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Ghassemi-Golezani K. 2012. Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics 5(2): 60-67.
Wellburn AR. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol. 144(3): 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2
Wordell Filho JA, Duarte HDSS, Rodrigues FDÁ. 2013. Effect of foliar application of potassium silicate and fungicide on the severity of leaf rust and yellow leaf spot in wheat. Rev Ceres. 60: 726-730. https://doi.org/10.1590/S0034-737X2013000500018
Yavaş İ, Ünay A. 2017. The role of silicon under biotic and abiotic stress conditions. Turk J Agric Res). 4(2): 204-209. https://doi.org/10.19159/tutad.300023