Enhancement of salt tolerance in quinoa (Chenopodium quinoa var. Titicaca) by seed priming with melatonin

Document Type : Research Paper

Authors

1 Department of Agronomy, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran

2 Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran

Abstract

In plants, melatonin (N-acetyl-5-methoxytryptamine) contributes to various environmental stress responses and developmental processes. Accordingly, the effect of seed priming with melatonin (1250 µM) on increasing salt tolerance at 40 dS m-1 NaCl was studied in Chenopodium quinoa var. Titicaca (quinoa) using a factorial experiment based on a completely randomized design at Shahrekord University in 2019. In the present experiment, different levels of NaCl and melatonin were first applied and according to the obtained results, 1250 μM melatonin and 40 dS m-1 NaCl were selected for the main study. The measured traits and indices included the fresh and dry weight, the content of photosynthetic pigments, hydrogen peroxide (H2O2), malondialdehyde (MDA), as well as the activity of catalase, ascorbate peroxidase, and guaiacol peroxidase. Seed priming with melatonin reduced the adverse effects of NaCl in the salt-stressed quinoa plants by increasing the dry weight (two-fold) and the level of photosynthetic pigments (1.2-fold) compared to the salinity stress alone. Also, the application of melatonin by changing the activity of antioxidant enzymes, reduced the content of H2O2 by 25% and MDA by 42%, which resulted in the reduction of oxidative stress in the quinoa plants under salinity conditions. Overall, it can be concluded that seed priming with an optimal level of melatonin can be a proper technique to increase salt tolerance in quinoa under highly saline conditions by reducing the harmful effects of salinity-induced oxidative stress by reducing the H2O2 and lipid peroxidation levels. It also protects the photosynthetic machinery by reducing the degradation of photosynthetic pigments which leads to the increased growth of the quinoa plants under salinity conditions.

Keywords

Main Subjects


Article Title [Persian]

افزایش تحمل به شوری در کینووا (Chenopodium quinoa var. Titicaca) توسط پرایمینگ بذر با ملاتونین

Authors [Persian]

  • منیژه جهان تیغی 1
  • پرتو روشندل 2
  • عبدعبدالرزاق دانش شهرکی 1
1 گروه زراعت، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد
2 گروه زیست شناسی، دانشکده علوم پایه، دانشگاه شهرکرد، شهرکرد
Abstract [Persian]

در گیاهان، ملاتونین (N-استیل-5-متوکسی تریپتامین) در پاسخ به تنش ­های مختلف محیطی و فرایندهای نموی مشارکت می­ نماید. بر این اساس، تاثیر پرایمینگ بذر با ملاتونین (1250 میکرومولار) روی افزایش تحمل به شوری (40 دسی زیمنس بر متر کلرید سدیم) در کینووا (Chenopodium quinoa var. Titicaca) با استفاده از آزمایش فاکتوریل بر پایه طرح کاملاً تصادفی با سه تکرار در دانشگاه شهرکرد در سال 1398 مورد بررسی قرار گرفت. در این تحقیق، ابتدا سطوح مختلف کلرید سدیم و ملاتونین به کار گرفته شد و بر اساس نتایج به دست آمده، ملاتونین با غلظت 1250 میکرومولار و کلرید سدیم با غلظت 40 دسی زیمنس بر متر برای آزمایش اصلی انتخاب گردید. صفات و شاخص­ های اندازه گیری شده عبارت بودند از وزن تر و خشک، میزان رنگیزه ­های فتوسنتزی، پراکسید هیدروژن (H2O2)، مالون دآلدئید (MDA)، و نیز فعالیت کاتالاز، آسکوربات پراکسیداز و گایاکول پراکسیداز. پرایمینگ بذر با ملاتونین با افزایش وزن خشک (2 برابر) و سطح رنگدانه ­های فتوسنتزی (1/2 برابر) در مقایسه با تنش شوری به تنهایی، اثرات نامطلوب NaCl را در گیاهان کینووا تحت تنش شوری کاهش داد. همچنین کاربرد ملاتونین با تغییر فعالیت آنزیم های آنتی اکسیدانی، کاهش میزان H2O2 (25 درصد) و MDA (42 درصد) باعث کاهش تنش اکسیداتیو در گیاهان تحت تنش کینووا شد.  به طور کلی، می ­توان نتیجه گرفت که پرایمینگ بذر با سطح بهینه ملاتونین می ­تواند تکنیک مناسبی برای افزایش تحمل به شوری در کینووا تحت شرایط بسیار شور باشد و این کار از طریق کاهش اثرات مضر تنش اکسیداتیو ناشی از شوری یعنی کاهش سطح H2O2 و MDA انجام می­ گیرد. همچنین ملاتونین با کاهش تخریب رنگدانه­ های فتوسنتزی، از دستگاه فتوسنتزی محافظت می­ کند و این امر منجر به افزایش رشد گیاهان کینووا تحت تنش شوری می ­شود.

Keywords [Persian]

  • انواع اکسیژن فعال
  • پیش تیمار بذر
  • تنش اکسیداتیو
  • شوری
  • کینووا
Adolf VI, Jacobsen SE, Shabala S. 2013. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environ Exp Bot. 92: 43-54.
Arnao MB, Hernández-Ruiz J. 2015. Functions of melatonin in plants: a review. J Pineal Res. 59(2): 133-150.
Arora D, Bhatla SC. 2017. Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD. Free Radic Biol Med. 106: 315-328.
Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK. 2014. Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J Pineal Res. 56(3): 238-245.
Buchanan BB, Balmer Y. 2005. Redox regulation: a broadening horizon. Annu Rev Plant Biol. 56: 187-220.
Chen DH, Ye HC, Li GF. 2000. Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci. 155(2): 179-185.
Chen Z, Xie Y, Gu Q, Zhao G, Zhang Y, Cui W, Xu S, Wang R, Shen W. 2017. The AtrbohF-dependent regulation of ROS signaling is required for melatonin-induced salinity tolerance in Arabidopsis. Free Radic Biol Med. 108: 465-477.
Chen YE, Mao JJ, Sun LQ, Huang B, Ding CB, Gu Y, Liao JQ, Hu C, Zhang ZW, Yuan S, et al. 2018. Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiol Plant. 164(3): 349-363.
Dawood MG, El-Awadi ME. 2015. Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biolo Colomb. 20(2): 223-235.
Eisa S, Hussin S, Geissler N, Koyro HW. 2012. Effect of NaCl salinity on water relations, photosynthesis and chemical composition of Quinoa ('Chenopodium quinoa' Willd.) as a potential cash crop halophyte. Aust J Crop Sci. 6(2): 357-368.
Fleta-Soriano E, Díaz L, Bonet E, Munné-Bosch S. 2017. Melatonin may exert a protective role against drought stress in maize. J Agron Crop Sci. 203(4): 286-294.
Gong X, Shi S, Dou F, Song Y, Ma F. 2017. Exogenous melatonin alleviates alkaline stress in Malus hupehensis Rehd. by regulating the biosynthesis of polyamines. Molecules. 22(9): 1542.
Guo YY, Tian SS, Liu SS, Wang WQ, Sui N. 2018. Energy dissipation and antioxidant enzyme system protect photosystem II of sweet sorghum under drought stress. Photosynthetica. 56(3): 861-872.
Hammam AA, Mohamed ES. 2020. Mapping soil salinity in the East Nile Delta using several methodological approaches of salinity assessment. Egypt J Remote Sens Space Sci. 23: 125-131.
Hariadi Y, Marandon K, Tian Y, Jacobsen SE, Shabala S. 2011. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. J Exp Bot. 62(1): 185-193.
Hernández-Ruiz J, Arnao MB. 2018. Relationship of melatonin and salicylic acid in biotic/abiotic plant stress responses. Agronomy. 8(4): 33
Hopmans JW, Qureshi AS, Kisekka I, Munns R, Grattan SR, Rengasamy P, Ben-Gal A, Assouline S, Javaux M, Minhas PS, et al. 2021. Critical knowledge gaps and research priorities in global soil salinity. Adv Agron. 169: 1-191.
Kato M, Shimizu S. 1985. Chlorophyll metabolism in higher plants. VI. Involvement of peroxidase in chlorophyll degradation. Plant Cell Physiol. 26(7): 1291-1301.
Ke Q, Ye J, Wang B, Ren J, Yin L, Deng X, Wang S. 2018. Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. Front Plant Sci. 9: 914.
Kostopoulou Z, Therios I, Roumeliotis E, Kanellis AK, Molassiotis A. 2015. Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Plant Physiol Biochem. 86: 155-165.
Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C. 2007. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol Biochem. 45(3-4): 244-249.
Li J, Liu J, Zhu T, Zhao C, Li L, and Chen M, 2019. The role of melatonin in salt stress responses. Int J Mol Sci. 20(7): 1735.
Liang C, Zheng G, Li W, Wang Y, Hu B, Wang H, Wu H, Qian Y, Zhu XG, Tan DX, et al. 2015. Melatonin delays leaf senescence and enhances salt stress tolerance in rice. J Pineal Res. 59(1): 91-101.
Lichtenthaler HK, Buschmann C. 2001. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr Protoc Food Anal Chem. 1(1): F4.3.1- F4.3.8.
Martinez V, Nieves-Cordones M, Lopez-Delacalle M, Rodenas R, Mestre TC, Garcia-Sanchez F, Rubio F, Nortes PA, Mittler R, Rivero RM. 2018. Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules. 23(3): 535.
Nag S, Saha K, Choudhuri MA. 2000. A rapid and sensitive assay method for measuring amine oxidase based on hydrogen peroxide–titanium complex formation. Plant Sci.157(2): 157-163.
Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, Imtiaz M, Bie Z, Huang Y. 2018. Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J Plant Physiol. 1(220): 115-127.
Nemat-Ala MM, Hassan NM. 2006. Changes of antioxidants levels in two maize lines following atrazine treatments. Plant Physiol Biochem. 44(4): 202-210.
Rasheed R, Ashraf MA, Hussain I, Ali S, Riaz M, Iqbal M, Farooq U, Qureshi FF. 2022. Priming effect in developing abiotic stress tolerance in cereals through metabolome reprogramming. In: Roychoudhury A, Aftab T, Acharya K. (eds.) Omics approach to manage abiotic stress in cereals. Singapore: Springer. pp. 47-71.
Repo-Carrasco R, Espinoza C, Jacobsen SE. 2003. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev Int. 19(1-2): 179-189.
Shams AS. 2012. Response of quinoa to nitrogen fertilizer rates under sandy soil conditions. In Proceedings of 13th International Conference of Agronomy, Faculty of Agriculture, Benha University, 9-10 September, Egypt.
Shi H, Jiang C, Ye T, Tan DX, Reiter RJ, Zhang H, Liu R, Chan Z. 2015. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. J Exp Bot. 66(3): 681-694.
Singh A. 2018. Alternative management options for irrigation induced salinization and waterlogging under different climatic conditions. Ecol Indic. 90: 184-192.
Sun C, Liu L, Wang L, Li B, Jin C, Lin X. 2021. Melatonin: a master regulator of plant development and stress responses. J Integr Plant Biol. 63(1): 126- 145.
Tian F, Hou M, Qiu Y, Zhang T, Yuan Y. 2020. Salinity stress effects on transpiration and plant growth under different salinity soil levels based on thermal infrared remote (TIR) technique. Geoderma. 357: 113961.
Wei W, Li QT, Chu YN, Reiter RJ, Yu XM, Zhu DH, Zhang WK, Ma B, Lin Q, Zhang JS, et al. 2015. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot. 66(3): 695-707.
Yao H, Wang X, Lin L. 2017. Effects of melatonin treated radish on the growth of following stubble lettuce under salt stress. In: 4th International Conference on Renewable Energy and Environmental Technology. Atlantis Press. pp. 387-390.
Zhan H, Nie X, Zhang T, Li S, Wang X, Du X, Tong W, Song W. 2019. Melatonin: a small molecule but important for salt stress tolerance in plants. Int J Mol Sci. 20(3): 709.
Zhang J, Zeng B, Mao Y, Kong X, Wang X, Yang Y, Zhang J, Xu J, Rengel Z, Chen Q. 2017. Melatonin alleviates aluminum toxicity through modulating antioxidative enzymes and enhancing organic acid anion exudation in soybean. Funct Plant Biol. 44(10): 961-968.
Zhang N, Zhang HJ, Sun QQ, Cao YY, Li X, Zhao B, Wu P, Guo YD. 2017. Proteomic analysis reveals a role of melatonin in promoting cucumber seed germination under high salinity by regulating energy production. Sci Rep. 7(1): 1-15.
Zuo Z, Sun L, Wang T, Miao P, Zhu X, Liu S, Song F, Mao H, Li X. 2017. Melatonin improves the photosynthetic carbon assimilation and antioxidant capacity in wheat exposed to nano-ZnO stress. Molecules. 22(10): 1727.