Effects of pollen source on pollen tube dynamics and fruit set in two almond promising genotypes

Document Type : Research Paper

Author

Received: May 24, 2023 Accepted: December 4, 2023 Temperate Fruit Research Center, Horticultural Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

Abstract

In this study, a pollination experiment on almond species was conducted about the pollen tube penetration in the pistil with a fluorescence microscope and the rate of fruit formation by the controlled pollination in the orchard. These species included two new almond genotypes of KD 13 and K11-8 as pollen receptors, and two almond cultivars Tuono (self-compatible) and D5 (self-incompatible), a peach cultivar HolouYazdi, and GN15 (hybrid between almond and peach) as donor pollen sources. This experiment was conducted in an almond orchard with six-year-old trees at Kamal-Shahr Horticulture Research Station in Karaj, Iran. The results showed a significant difference among pollen sources for in vitro pollen grain germination. The pollen germination percentage ranged from 45 to 86% in the cultivars and genotypes under study. There were significant differences among crosses for the rate of pollen tube penetration in different parts of the style. KD13 × D5 (self-incompatible (with 9.6% and K11-8 × D5 (self-incompatible) with 7.63% showed the highest percentage of pollen tube penetration but KD13 × Tuono and K11-8  ×Tuono with 1% and 2.12%, respectively, had the lowest pollen tube insertion into the style. Ninety days after pollination, the crosses of KD13 × KD5 and K11-8 × D5 showed the highest percentage of fruit set (48.90 and 42.45%, respectively) as compared to other pollinizers. It was determined that the fruit formation was mainly influenced by the pollen source and therefore the source of pollen had a decisive role in the final fruit set. As a result, it is important to choose the right pollen source in the breeding programs before recommending the cultivation of new almond varieties.
 

Keywords

Main Subjects


Article Title [Persian]

تأثیر منبع گرده بر دینامیک لوله گرده و تشکیل میوه در دو ژنوتیپ امیدبخش بادام

Author [Persian]

  • علی ایمانی
مرکز تحقیقات میوه‌های معتدل، پژوهشکده باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی (AREEO)، کرج
Abstract [Persian]

در این مطالعه، آزمایش گرده‌افشانی در گونه‌های بادام با بررسی رشد لوله گرده در مادگی با استفاده ازمیکروسکوپ فلورسانس و میزان تشکیل میوه در گرده‌افشانی کنترل‌شده در مزرعه انجام شد. این گونه ­ها شامل دو ژنوتیپ جدید بادام KD13 و K11-8 به عنوان گیرنده گرده و دو رقم بادام خودسازگار (Tuono) و خود ناسازگار (D5)، یک رقم هلو به نام یزدی و GN15 (هیبرید بین بادام و هلو) به عنوان گرده دهنده بودند. این آزمایش در باغ بادام با درختان شش ساله در ایستگاه تحقیقات باغبانی کمال شهر کرج انجام شد. نتایج حاصل از جوانه زنی دانه گرده در شرایط آزمایشگاهی تفاوت معنی­ داری را بین منابع گرده دهنده نشان داد. میانگین درصد جوانه زنی گرده در ارقام و ژنوتیپ ­ها بین 45 تا 86 درصد متغیر بود. بین تلاقی‌های مختلف، از نظر میزان نفوذ لوله گرده در قسمت‌های مختلف خامه گل تفاوت معنی‌داری دیده شد. نتایج نشان داد که تلاقی   D5 (خود ناسازگار) × KD13 با 9.6% درصد و D5 (خود ناسازگار) × K11-8 با 7.63% یشترین درصد نفوذ لوله گرده به پایه خامه را داشتند، در حالی که درصد متوسط لوله گرده وارد شده به پایه خامه گل در تلاقی KD13 × Tuono و K11-8 × Tuono به ترتیب 1 و 2.12 درصد بود. نود روز پس از گرده افشانی، تلاقی ­های KD13 × D5 و K11-8 × D5 بیشترین درصد تشکیل میوه (به ترتیب 48.90 و 42.45 درصد) را نسبت به سایر گرده دهنده ­ها نشان دادند.  در این تحقیق مشخص شد که تشکیل میوه عمدتاً تحت تأثیر نوع گرده است و بنابراین منبع گرده نقش تعیین کننده ­ای در تشکیل میوه نهایی دارد. در نتیجه، انتخاب منبع گرده مناسب در برنامه های اصلاحی پیش ازتوصیه کشت ارقام جدید بادام حائز اهمیت می ­باشد.
 

Keywords [Persian]

  • بادام
  • تلقیح
  • خود ناسازگاری
  • هیبرید
Alonos JM, Socias i Company R. 2005. Differential pollen tube growth in inbred self-compatible almond genotypes. Euphytica 23: 207-213.
Casas-Agustench, P, Salas-Huetos, A, Salas-Salvadó J. 2011. Mediterranean nuts: origins, ancient medicinal benefits and symbolism. Public Health Nutr. 14: 2296-2301.
Dicenta F, Ortega E, Canovas JA, Egea J. 2002. Self-pollination vs. cross-pollination in almond: pollen tube growth, fruit set and fruit characteristics. Plant Breed. 121: 163-167.
Fallah M, Rasouli M, Sharafi Y, Imani A. 2016. Study of pollen compatibility relationships among some selected promising almond cultivars and genotypes. Iranian J Hortic Sci. 47(3): 457-467. (In Persian with English abstract).
Gómez EM, Buti M, Sargent DJ, Dicenta F, Ortega E. 2019. Transcriptomic analysis of pollen-pistil interactions in almond (Prunus dulcis) identifies candidate genes for components of gametophytic self-incompatibility. Tree Genet Genomes. 15(4): 53.
Gómez EM, Prudencio ÁS, Ortega E. 2022. Protein profiling of pollen–pistil interactions in almond (Prunus dulcis) and identification of a transcription regulator presumably involved in self-incompatibility. Agronomy 12(2): 345.
Henselek Y, Eilers EJ, Kremen C, Hendrix SD, Klein AM. 2018. Pollination requirements of almond (Prunus dulcis): combining laboratory and field experiments. J Econ Entomol. 111(3): 1006-1013.
Herrera S, Lora J, Hormaza JI, Rodrigo J. 2020. Determination of self- and inter-(in)compatibility relationships in apricot combining hand-pollination, microscopy and genetic analyses. J Vis Exp. Jun 16:(160). PMID: 32628154.
Imani A, Talaie AR. 1998. Effect of culture medium type and temperature on pollen germination of almond in vitro. Iranian J Agric Sci. 29: 79-87. (In Persian with English abstract)
Martinez Gomez P, Alonso JM, Lopez M, Battle I, Ortega E, Sanchez-perez R, Disenta F. 2003. Identification of self-incompatibility alleles in almond and related Prunus species using PCR. Genetics. 123: 397-401.
Ortega E, Egea J, Cánovas JA, Dicenta F. 2002. Pollen tube dynamics following half and fully compatible pollinations in self-compatible almond cultivars. Sex Plant Reprod. 15: 47-51.
Ortega E, Martinez-Garca P, Dicenta F, Boskovic R, Tobutt KR. 2002. Study of self-compatibility in almond progenies from self-fertilization by florescence microscopy and stylar ribonuclease assay. Acta Hortic. 591: 229-232.
Ortega E, Dicenta F. 2004. Suitability of four different methods to identify self-compatible seedlings in an almond breeding programme. J Hortic Sci Biotechnol. 79(5): 747-753.
Ortega E, Martinez-Garca P, Dicenta F. 2006. Influence of self-pollination in fruit quality of autogamous almonds. Sci Hortic. 109: 293-296.
Radović A, Nikolić D, Milatović D, Ivković BZ, Stevanović N. 2016. The effect of plant hormones on pollen germination and pollen tube growth of almond cultivars. Acta Hortic. 1139: 375-379.
Rasouli M, Fatahi R, Zamani Z, Imani A. 2009. A study of the compatibility and the effects of supplementary pollination with different pollens on fruit set of self-compatible almond 'Supernova'. Iranian J Hortic Sci. 40(4): 61-70. (In Persian with English abstract).
Rasouli M, Imani A. 2016. Effect of supplementary pollination by different pollinizers on fruit set and nut physicochemical traits of ‘Supernova’, a self-compatible almond. Fruits 71(5): 299-306.
Rasouli, M, Jafari Taeme A, Rahmati Joneidabad M, Janatizadeh A. 2021. Evaluation of pollination compatibility and selection of suitable pollinizers for the commercial almond cultivar of Shahrood12. Res Pomol. 5(2): 141-154 (In Persian with English abstract).
Sharafi Y, Karimi M, Ghorbanifar M. 2010. Study of pollen tub cross-compatibility and fruit set in some almond genotypes. Afr J Plant Sci. 4(5): 135-137.
Socias i Company R. 1990. Breeding self-incompatibility almond. Plant Breed Rev. 8: 313-338.
Socias i Company R, Kester DE, Bradley MV. 1976. Effect of temperature and genotype on pollen tube growth in some self-compatible and self-incompatible almond cultivars. J Amer Soc Hort Sci. 101(5): 490-493.
Socias i Company R, Gradziel TM. 2017. Almonds: botany, production and uses. CABI: Boston, MA, USA.
Taş N, Gökmen V. 2017. Phenolic compounds in natural and roasted nuts and their skins: a brief review. Curr Opin Food Sci. 14: 103-109.
Vezvaei A, Jackson JF. 1995. Effect of pollen parent and stages of flower development on almond nut production. Aust J Exp Agric. 35: 109-113.