Genetic variation of agronomic traits in a global collection of oats (Avena sp.)

Document Type : Research Paper

Authors

1 Department of Plant Genetics and Production, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran

2 Department of Plant Genetics and Production, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran; Cereal Research Centre, Razi University, Kermanshah, Iran

Abstract

This study aimed to evaluate the variation in agronomic traits of 361 cultivated oat genotypes and to identify superior genotypes for oat breeding programs. The experiment was conducted as a simple square lattice design with two replications for two growing seasons (2018-2019 and 2019-2020) in Kermanshah, Iran. There was a significant difference among oat genotypes. The highest grain yield (GY) was obtained in the “OX87:080-2” and “LA Prevision” genotypes. Furthermore, genotypes “Rubida” and “VDO-931-1” were superior regarding the biomass. Several analyses were performed using the best linear unbiased prediction estimates. The correlation coefficients showed a significant positive relationship between GY and biomass, 1000-kernel weight (TKW), and the number of panicles per plot. Biomass was positively and significantly correlated with all studied traits, except TKW. The number of grains per panicle (NGPP) and TKW had the highest positive direct effects on the GY and NPPP imposed the highest positive indirect effect through TKW. While the highest negative indirect effect was exerted by the NGPP through the TKW. The results of pseudo-F for cluster analysis grouped genotypes in five separate groups. The fifth group had the highest values ​​for GY, biomass, TKW, and NPPP. So, these genotypes could be considered as qualified parents to produce superior lines in breeding programs. 

Keywords

Main Subjects


Aghaei N, Zarei L, Chaghamirza K. 2023. Agro-morphological and physiological traits affecting grain yield of durum wheat advanced generation under rainfed conditions. J Plant Physiol Breed. 13(1): 79-94. Ahmad A, Anjum F.M, Zahoor T, Nawaz H, Ahmed Z. 2010. Extraction and characterization of beta-d-glucan from oat for industrial utilization. Int J Biol Macromol. 46(3): 304-309.
Alvarado G, Rodriguez FM, Pacheco A, Burgueño J, Crossa J, Vargas M, Perez-Rodriguez P, and Lopez-Cruz MA, 2020. META-R: a software to analyze data from multi-environment plant breedig trials. Crop J. 8(5):745-756.
 Ayub M, Shehzad M, Nadeem MA, Pervez M, Naeem M, Sarwar N. 2011. Comparative study on forage yield and quality of different oat (Avena sativa L.) varieties under agro-ecological conditions of Faisalabad, Pakistan. Afr J Agric Res. 6(14): 3388-3391.
 Batalova GA, Loskutov IG, Shevchenko SN, Zhuikova OA, Krotova NV, Tulyakova MV. 2019. On breeding of naked oat cultivar Virovets. Russ Agric Sci. 45: 412-415.
Bibi A, Shahzad A, Sadaqat H, Tahir M, Fatima B. 2012. Genetic characterization and inheritance studies of oats (Avena sativa L.) for green fodder yield. nt J Biol Pharm Allied Sci. 1(4): 450-460.
 Boczkowska M, Onysk A. 2016. Unused genetic resources: a case study of Polish common oat germplasm. Ann Appl Biol. 169(1): 155-165.
Celestina C, Hunt J, Kuchel H, Harris F, Porker K, Biddulph B, Bloomfield M, McCallum M, Graham R, Matthews P, et al. 2023. A cultivar phenology classification scheme for wheat and barley. Eur J Agron. 143: 126732.
 Chauhan CH, Singh SK. 2019. Genetic variability, heritability and genetic advance studies in oat (Avena sativa L.). Int J Chem Stud. 7: 992-994.
 Clemens R, van Klinken BJ. 2014. The future of oats in the food and health continuum. Br J Nutr. 112 (2): S75-S79.
de Oliveira Maximino JV, Barros LM, Pereira RM, de Santi II, Aranha BC, Busanello C, Viana VE, Freitag RA, Batista BL, Costa de Oliveira A, et al. 2021. Mineral and fatty acid content variation in white oat genotypes grown in Brazil. Biol Trace Elem Res. 199(3): 1194-1206.
Dewey DR, Lu KH. 1959. A correlation and path coefficient analysis of components of crested wheatgrass seed production. Agron J. 51: 515-518. 
Dimitrova-Doneva M, Savova T. 2017. Correlation and path analysis of grain yield and some of its components in perspective lines of oat. Bulg J Crop Sci. 54(5): 10-14.
FAO. 2020. FAOSTAT. Crops, livestock, and food. Available https://www.fao.org/food-agriculture-statistics/data-release/crop-livestock-and-food/en/
Frankel OH, Bennett E. 1970. Genetic resources in plants: their exploration and conservation. International Biological Programme. Blackwell Scientific Handbook No. 11. Oxford and Edinburgh. 554 p. https://catalogue.nla.gov.au/catalog/1879237.
Gharib MAAH, Qabil N, Salem AH, Ali MMA, Awaad HA, Mansour E. 2021. Characterization of wheat landraces and commercial cultivars based on morpho-phenological and agronomic traits.
Cereal Res Commun. 49: 149-159.
Hadi BH, Al-Maliky RJ, Zaid MA, Hassan WA. 2018. Estimation of some genetic parameters in bread wheat Triticum aestivum L. for Wasit and Diwaniyya locations. Euphrates J Agric Sci. 10(1): 194-203.
Holland JB, Frey KJ, Hammond EG. 2001. Correlated responses of fatty acid composition, grain quality, and agronomic traits to nine cycles of recurrent selection for increased oil content in oat. Euphytica 122: 69-79.
Ihsan M, Nazir N, Ghafoor A, Khalil AAK, Zahoor M, Nisar M, Khames A, Ullah R, Shah AB. 2021. Genetic diversity in local and exotic Avena sativa L.(Oat) germplasm using multivariate analysis. Agronomy 11(9): 1713.
Kebede G, Faji M, Feyissa F, Mohammed K, Assefa G, Geleti D, Minta M, Dejene M, Alemayehu M, Tsegahun A, et al., 2021. Yield and nutritional quality of oat (Avena sativa) genotypes under vertisols conditions in the central highlands of Ethiopia. J Agric Environ Sci. 6(2): 12-20.
Kumar P, Gupta VK, Misra AK, Modi DR, Pandey BK. 2009. Potential of molecular markers in plant biotechnology. Plant Omics 2(4): 141-162.
Lorencetti C, Félix de Carvalholl FI, Costa de Oliveira A, Valério IP, Hartwig I, Benin G, Mallmann Schmidt DA. 2006. Applicability of phenotypic and canonic correlations and path coefficients in the selection of oat genotypes. Sci Agric. 63(1):11-19.  
Mahadevan M, Calderini DF, Zwer PK, Sadras VO. 2016. The critical period for yield determination in oat (Avena sativa L.). Field Crops Res. 199: 109-116.
 McCabe CP, Burke JI. 2021. Oat (Avena sativa) yield and grain fill responses to varying agronomic and weather factors. J Agric Sci. 159(1-2): 90-105.
Milligan SB, Gravois KA, Bischoff  KP, Martin FA. 1990. Crop effects on genetic relationships among sugarcane traits. Crop Sci. 30: 927-931.
Montilla-Bascón G, Sánchez-Martín J, Rispail N, Rubiales D, Mur L, Langdon T, Griffiths I, Howarth C, Prats E. 2013. Genetic diversity and population structure among oat cultivars and landraces. Plant Mol Biol Report. 31: 1305-1314.
Musa Özcan M, Özkan G, Topal A. 2006. Characteristics of grains and oils of four different oats (Avena sativa L.) cultivars growing in Turkey. Int J Food Sci Nutr. 57: 345-352.
Nirmalakumari A, Sellammal R, Thamotharan G, Ezhilarasi T, Ravikesavan R. 2013. Trait association and path analysis for grain yield in oat in the western zone of Tamil Nadu. Int J Agric Sci. 3(2): 309-316.
Paudel D, Dhungana B, Caffe M, Krishnan P. 2021. A review of health-beneficial properties of oats. Foods 10 (11): 2591.
Peterson DM, Wesenberg DM, Burrup DE, Erickson CA. 2005. Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Sci. 45: 1249-1255.
Rahim MA, Mia AA, Mahmud F, Zeba N, Afrin KS. 2010. Genetic variability, character association and genetic divergence in mungbean (Vigna radiata L. Wilczek). Plant Omics. 3(1): 1-6.
Sarker U. 2020. Variability, heritability, character association, and path coefficient analysis in advanced breeding lines of rice (Oryza sativa L.). Genetika 52: 711-726.
Tessema A, Getinet K. 2020. Evaluation of oats (Avena sativa) genotypes for seed yield and yield components in the highlands of Gamo, Southern Ethiopia. Ethiopian J Agric Sci. 30(3): 15-23.
Vaisi H, Golparvar AR. 2013. Determination of the best indirect selection criteria to improve grain yield and seed weight in oat (Avena sativa L.) genotypes. Int J Farming Allied Sci. 2(19): 747-750.
Wagh VR, Sonone AH, Damame SV. 2018. Assessment of genetic variability correlation and path coefficient analysis in forage oat (Avena sativa L.). Forage Res. 44(3): 172-175.
Zaheri A, Bahraminejad S, Farshadfar E, Zarei L. 2013. Correlation and path analysis of grain yield and yield components of oat genotypes under irrigated and rainfed conditions. Int J Agron Plant Prod. 4(10): 2656-2664.