The effect of tetraploidy on the expression of genes involved in alkaloid biosynthesis in Papaver fugax Poir.

Document Type : Research Paper


1 Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.

2 Meshginshahr Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran.


Polyploidy, a common phenomenon in the evolution of plant species, plays an imperative role in plant diversification. Bride rose poppy (Papaver fugax Poir.) is a valuable medicinal plant due to its various alkaloids, such as fugapavin, mecambrin, romerine, salutaridine, protopine, and thebaine. In this study, we used quantitative polymerase chain reaction (qRT-PCR) to study the differential expression of four key genes, including CYPB80B1 ((S)-N-methylcoclaurine-3’-hydroxylase), MLP (major latex protein), 6OMT ((S)-norcoclaurine-6-O-methyltransferase), and salAT (7(S)-salutaridinol-7-O-acetyltransferase), involved in the biosynthesis of poppy alkaloids. The assessment of extracted RNA samples on 1% agarose gel electrophoresis and NanoDrop showed the proper quality and quantity of isolated RNA samples for cDNA synthesis. Gene expression analysis through qRT-PCR revealed increased expression of CYP80B1, MLP, and SalAT genes and decreased expression of 6OMT in tetraploid plants compared with diploids. Our results indicated that autotetraploidy induction could be applied, as a useful method, to increase morphine production in P.  fugax.


Main Subjects

Article Title [Persian]

تأثیر تتراپلوئیدی بر بیان ژن‌های دخیل در بیوسنتز آلکالوئید در Papaver fugax Poir.

Authors [Persian]

  • گیتی ستوده اردبیلی 1
  • رسول اصغری ذکریا 1
  • ناصر زارع 1
  • لیلا غفارزاده نمازی 2
1 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل
2 دانشکده کشاورزی مشگین شهر، دانشگاه محقق اردبیلی، اردبیل
Abstract [Persian]

پلی‌پلوئیدی، پدیده‌ای رایج در تکامل گونه­ های گیاهی، نقش مهمی در تنوع گیاهی ایفا می‌کند. خشخاش برگ ریزان (Papaver fugax Poir.)  به دلیل داشتن آلکالوئیدهای مختلف مانند فوگاپاوین، مکامبرین، رومرین، سالوتاریدین، پروتوپین و تبائین، گیاه دارویی ارزشمندی است. در این مطالعه از واکنش زنجیره‌ای پلیمراز کمی (qRT-PCR) برای بررسی بیان افتراقی چهار ژن کلیدی در بیوسنتز آلکالوئیدهای خشخاش {CYPB80B1 ((S)-N-methylcoclaurine-3'-hydroxylase) ،MLP (Major latex protein)  ،OMT6  ((S)-norcoclaurine-6-O-methyltransferase)  و(7(S)-salutaridinol-7-O-acetyltransferase) salAT   استفاده شد. ارزیابی نمونه‌های RNA استخراج‌شده روی الکتروفورز ژل آگارز 1 درصد و نانودراپ، کیفیت و کمیت مناسب نمونه‌های RNA جدا شده برای سنتز cDNA  را نشان داد. تجزیه و تحلیل بیان ژن‌ از طریق qRT-PCR بیانگر افزایش بیان ژن‌های CYP80B1 ،MLP  و SalAT و کاهش بیان ژن  OMT6 در گیاهان تتراپلوئید در مقایسه با دیپلوئیدها بود. این نتایج نشان داد که القای اتوتتراپلوئیدی می‌تواند به عنوان یک روش مفید برای افزایش تولید مورفین در P. fugax استفاده شود.

Keywords [Persian]

  • آلکالوئیدها
  • بیان ژن
  • تتراپلوئیدی
  • Papaver fugax
Abdoli M, Moieni A, Badi HN. 2013. Morphological, physiological, cytological and phytochemical studies in diploid and cholchicine-induced tetraploid plants of Echinacea purpurata (L.). Acta Physiol Plant. 35: 2075–2083.
Adams K, Wendel JF. 2005. Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8: 135–141.
Albuzio A, Spettoli P, Cacco G. 2006. Changes in gene expression from diploid to autotetraploid status of Lycopersicon esculentum. Physiol Plant. 44: 77–80.
Allen RS, Miller JAC, Chitty JA, Fist AJ, Gerlach WL, Larkin PJ. 2008. Metabolic engineering of morphinan alkaloids by overexpression and RNAi suppression of salutaridinol 7-O-acetyltransferase in opium poppy. Plant Biotechnol J. 6: 22–30.
Bayazeid O, Yalçın FN. 2021. Biological targets of 92 alkaloids isolated from Papaver genus: a perspective based on in silico predictions. Med Chem Res. 30: 574–585.
Beaudoin GAW, Facchini PJ. 2014. Benzylisoquinoline alkaloid biosynthesis in opium poppy. Planta 240: 19–32.
Belabbassi Q, Khelifi Slaoui M, Zaoui D, Benyammi R. 2016. Synergistic effects of polyploidization and elicitation on biomass and hyoscyamine content in hairy roots of Datura stramonium. Biotechnol Agron Soc Environ. 20: 408–416.
Caruso I, Laura L, Tommasi ND, Piaz FD, Frusciante L. 2011. Secondary metabolite profile in induced tetraploids of wild Solanum commersonii Dun. Chem Biodivers. 8: 2226–2237.
Chen ZJ, Ni Z. 2006. Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. Bioessays 28: 240–252.
Cullen J, 1965. Papaver. In: Davis PH, editor. Flora of Turkey and the East Aegean Islands. Edinburgh, UK: Edinburgh University Press. p. 218–219.
Dar TH, Raina SN, Goel S. 2017. Cytogenetic and molecular evidences revealing genomic changes after autopolyploidization: a case study of synthetic autotetraploid Phlox drummondii hook. Physiol Mol Biol Plants. 23: 641-650.
De Jesus Gonzalez L and Weathers PJ. 2003. Tetraploid Artemisia annua hairy roots produce more artemisinin than diploids. Plant Cell Rep. 21: 809–813.
Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J. 2011. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult. 104: 359–373.
Facchini PJ. 2001. Alkaloid biosynthesis in plants, biochemistry, cell biology, molecular regulation and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol. 52: 29–66.
Fairbairn JW, Hakim F. 1973. Papaver bracteatum Lindl.: a new plant source of opiates.  J Pharm Pharmacol. 25: 353–358.
Fakhari AR, Nojavan S, Ebrahimi SN, Evenhuis CJ. 2010. Optimized ultrasound-assisted extraction procedure for the analysis of opium alkaloids in Papaver plants by cyclodextrin-modified capillary electrophoresis. J Sep Sci. 33: 2153–2159.
Gao SL, Zhu DN, Cai ZH, Xu DR. 1996. Autotetraploid plants from colchicine treated bud culture of Salvia miltiorrhiza Bge. Plant Cell Tissue Organ Cult. 47: 73–77.
Hagel JM, Facchini PJ. 2010. Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nat Chem Biol. 6: 273–275.
Hassanzadeh F, Zakaria RA, Azad NH. 2020. Polyploidy induction in Salvia officinalis L. and its effects on some morphological and physiological characteristics. Cytologia 85(2): 157–162.
Heinrich M, Barnes J, Gibbons S, Williamson EM. 2004. Fundamentals of pharmacognosy and phytotherapy, Section 2. New York: Elsevier Health Sciences Press.
Hovav R, Udall JA, Chaudhary B, Rapp R, Flagel L., Wendel JF. 2008. Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant. Proc Natl Acad Sci USA. 105: 6191–6195.
Kadereit JW. 1988. Sectional affinities and geographical distribution in the genus Papaver L. (Papaveraceae). Beitr Biol  Pflanz. 63: 139-156.
Khezri M, Zakaria RA, Zare N, Johari-Ahar M. 2022. Tetraploidy induction increases galegine content in Galega officinalis L. J Appl Res Med Aromat Plants. 26: 100366.
Lavania UC, Srivastava S. 1999. Quantitative delineation of karyotype variation in Papaver as a measure of phylogenetic differentiation and origin. Curr Sci. 77: 429–435.
Lee EJ, Facchini PJ. 2011. Tyrosine aminotransferase contributes to benzylisoquinoline alkaloid biosynthesis in opium poppy. Plant Physiol. 157: 1067–1078.
Leitch IJ, Bennett MD. 2004. Genome downsizing in polyploid plants. Biol J Linn Soc. 82: 651–663.
Leung YY, Hui L, Kraus VB. 2015. Colchicine - update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum. 45: 341–350.
Levy AA, Feldman M. 2004. Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol J Linn Soc. 82: 607–613.
Madani H, Hosseini B, Dehghan E, Rezaei Chiyaneh E. 2015. Enhanced production of scopolamine in induced autotetraploid plants of Hyoscyamus reticulatus L. Acta Physiol Plant. 37: 55.
Madon M, Clyde M, Hashim H, Mohd Yusuf Y, Mat H, Saratha S. 2005. Polyploidy induction of oil palm through colchicine and oryzalin treatments. J Oil Palm Res. 17: 110–123.
Majdi M, Karimzadeh G, Malboobi MA, Omidbaigi R, Mirzaghaderi G. 2010. Induction of tetraploidy to feverfew (Tanacetum parthenium SchulzBip.): morphological, physiological, cytological, and phytochemical changes. HortScience 45: 16–21.
Manzoor A, Ahmad T, Bashir MA, Hafiz IA, Silvestri C. 2019. Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants 8: 194.
Miri SM. 2020. Artificial polyploidy in the improvement of horticultural crops. J Plant Physiol Breed. 10(1): 1–28.
Mishra BK, Pathak S, Sharma A, Trivedi PK, Shukla S. 2010. Modulated gene expression in newly synthesized auto-tetraploid of Papaver somniferum L. S Afr J Bot. 76: 447–452.
Murali KM, Vanitha J, Jiang S, Ramachandran S. 2013. Impact of colchicine treatment on Sorghum bicolor BT×623. Mol Plant Breed. 15: 128–135.
O’Connor SE. 2010. 1.25 – Alkaloids. In: Liu HW (Ben), Mander L, editors. Comprehensive Natural Products II, Amsterdam, Netherlands: Elsevier. p. 977–1007.
Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ. 2003. Understanding mechanisms of novel gene expression in polyploids. Trends Genet. 19: 141–147.
Pfaffl MW, Horgan GW, Dempfle L. 2002. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in realtime PCR. Nucleic Acids Res. 30: 36–46.
Pires JC, Zhao J, Schranz ME, Leon EJ, Quijada PA, Lukens L, Osborn TC. 2004. Flowering time divergence and genomic rearrangements in resynthesized polyploids (Brassica). Biol J Linn Soc. 82: 675–688.
Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS. 2004. Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci USA. 101: 18240–18245.
Salmon A, Ainouche ML. 2010. Polyploidy and DNA methylation: new tools available. Mol Ecol. 19: 213–215.
Salmon A, Ainouche ML, Wendel JF. 2005. Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Eco. 14: 1163–1175.
Sariyar G. 2002. Biodiversity in the alkaloids of Turkish Papaver species. Pure Appl Chem. 74(4): 557–574.
Sattler MC, Carvalho CR, Clarindo WR. 2016. The polyploidy and its key role in plant breeding. Planta 243: 281–296.
Shafiee A, Mahmoudi Z, Samadi N. 1997. Alkaloids of papaveraceae XVI. Alkaloids of Papaver fugax population Tarom. J Sci I R Iran 8: 166–169.
Singh V. 2004. Plant systematic. An integrated approach. Enfield, NH, USA: Science Publishers. 561 p.
Small RL, Ryburn JA, Wendel JF. 1999. Low levels of nucleotide diversity at homeologous Adh loci in allotetraploid cotton (Gossypium L.). Mol Biol Evol. 16: 491–501.
Sotoudeh Ardabili G, Zakaria RA, Zare N, Namazi LG. 2021. Induction of autotetraploidy in bride rose poppy (Papaver fugax Poir.) by colchicine treatment of seeds and seedlings. Cytologia 86(1): 15-19.
Tamayo Ordóñez MC, Espinosa Barrera LA, Tamayo Ordóñez YJ, Ayil Gutiérrez B, Sánchez Teyer LF. 2016. Advances and perspectives in the generation of polyploid plant species. Euphytica 209: 1–22.
Tavan M, Mirjalili MH, Karimzadeh G. 2015. In vitro polyploidy induction: changes in morphological, anatomical and phytochemical characteristics of Thymus persicus (Lamiaceae). Plant Cell Tissue Organ Cult. 122: 573–583.
Thao NTP, Ureshino K, Miyajima I, Ozaki Y, Okubo H. 2003. Induction of tetraploids in ornamental Alocasia through colchicine and oryzalin treatments. Plant Cell Tissue Organ Cult. 72: 19–25.
Wendel JF, Schnabel A, Seelanan T. 1995. Bidirectional inter locus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA. 92: 280–284.
Yang XH, Ye CY, Cheng ZM, Tschaplinski TJ, Wullschleger SD, Yin WL, Xia XL, Tuskan GA. 2011. Genomic aspects of research involving polyploid plants. Plant Cell Tissue Organ Cult. 104: 387–397.
Yu X, Gao X, Zhu Z, Cao Y, Zhang Q, Tu P, Chai X. 2014. Alkaloids from the tribe Bocconieae (Papaveraceae). A chemical and biological review. Molecules 19: 13042-13060.
Yun Soo K, Eun Joo H, Hosakatte NM, Kee Yoeup P. 2004. Effect of polyploidy induction on biomass and ginsenoside accumulations in adventitious roots of ginseng. J Plant Biol. 47: 356–360.