Evaluation of salinity tolerance of cow cockle (Vaccaria hispanica) ecotypes at germination and adult plant stages

Document Type : Research Paper

Authors

1 Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran

2 Department of Agronomy and Plant Breeding, University of Mohaghegh Ardabili, Ardabil, Iran

3 Moha Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iranggeg Ardabili University

Abstract

This study aimed to investigate the response of cow cockle (Vaccaria hispanica (Mill.) Rauschert) ecotypes from northwest Iran to salinity stress at the germination and adult plant stages via a factorial experiment based on a completely randomized design with three replications in 2021. The results showed significant differences among the ecotypes regarding the germination components and morpho-physiological traits, indicating the existence of genetic diversity among them. Germination percentage and its components decreased with increasing salinity levels. So, at the NaCl concentrations greater than 120 mM, seed germination was inhibited in all studied ecotypes. This indicated that the cow cockle is a salinity-sensitive species and does not tolerate high salt concentrations. At the adult plant stage, salinity decreased plant height, root and stem dry weights, chlorophyll a and b content, and increased shoot sodium content and sodium to potassium ratio. The estimation of the multi-trait genotype-ideotype distance index (MGIDI) for different ecotypes based on various traits showed that the E3, E8, and E6 ecotypes having the lowest MGIDI values under salt stress conditions at both germination and adult plant stages, were the most tolerant ecotypes. Moreover, the E7 and E1 ecotypes had the highest MGIDI values at both growth stages and showed a higher sensitivity to salt stress. The more tolerant ecotypes selected based on the MGIDI indicator can be used for further research and selection in the breeding programs of this plant.

Keywords

Main Subjects


Article Title [Persian]

ارزیابی تحمل شوری اکوتیپ‌های جغجغک (Vaccaria hispanica) در مراحل جوانه‌زنی و گیاه بالغ

Abstract [Persian]

این تحقیق با هدف بررسی واکنش اکوتیپ‌های جغجغک (Vaccaria hispanica (Mill.) Rauschert) شمال غرب ایران به تنش شوری در مراحل جوانه‌زنی و گیاه بالغ به‌صورت آزمایش فاکتوریل بر پایه طرح کاملاً تصادفی با سه تکرار در سال 1400 انجام شد. نتایج نشان داد که بین اکوتیپ‌ها از نظر مولفه‌های جوانه‌زنی و صفات مورفوفیزیولوژیک تفاوت معنی داری وجود دارد که نشان‌دهنده وجود تنوع ژنتیکی در بین آن­ ها است. با افزایش شدت تنش، درصد جوانه‌زنی و شاخص‌های آن کاهش یافت، به طوری که در غلظت بیش از 120 میلی‌مولار NaCl، جوانه‌زنی بذر در تمامی اکوتیپ‌های مورد مطالعه متوقف شد. این نتایج نشان داد که جغجغک گونه‌ای نسبتاً حساس به شوری است و غلظت بالای نمک را تحمل نمی‌کند. در مرحله گیاه بالغ، شوری باعث کاهش ارتفاع بوته، وزن خشک ریشه و ساقه، محتوای کلروفیل a و b و افزایش میزان سدیم اندام هوایی و نسبت سدیم به پتاسیم شد. برآورد شاخص فاصله ژنوتیپ-ایدئوتیپ چند صفتی (MGIDI) برای اکوتیپ‌های مورد استفاده بر اساس صفات مختلف نشان داد که اکوتیپ‌های E3،E8  و E6 با داشتن کمترین مقادیر MGIDI در شرایط تنش شوری در هر دو مرحله جوانه‌زنی و گیاه بالغ متحمل‌تر بودند. علاوه بر این، در هر دو مرحله رشدی، اکوتیپ‌های E7 و E1 با بالاترین مقادیر  MGIDI، حساسیت بیشتری به تنش شوری نشان دادند. از اکوتیپ‌های متحمل ­تر انتخاب شده بر اساس شاخص MGIDI می‌توان برای تحقیقات و گزینش بیشتر در برنامه­ های اصلاحی این گیاه استفاده کرد.

Keywords [Persian]

  • تجزیه به عامل ها
  • تنش شوری
  • جغجغک
  • شاخص MGIDI
Abdul-Baki AA, Anderson JD. 1973. Vigor determination in soybean seed by multiple criteria. Crop Sci. 13(6): 630-633. Ari E, Mutlu N, Soylu I, Bedir H, Genc I, Deni, İG. 2022. Morphological and agronomic characterization of Turkish Vaccaria hispanica (Mill.) Rauschert populations. Turk J Agric For. 46(6): 933-946.
Balsevich JJ, Bishop GG, Ramirez‐Erosa I. 2006. Analysis of bisdesmosidic saponins in Saponaria vaccaria L. by HPLC‐PAD‐MS: identification of new quillaic acid and gypsogenin 3‐O‐Trisaccharides. Phytochem Anal. 17(6): 414-423.
Biliaderis CG, Mazza G, Przybylski R. 1993. Composition and physico‐chemical properties of starch from cow cockle (Saponaria vaccaria L.) seeds. Starch 45(4):121-127.
Campbell MJ, Hamilton B, Shoemaker M, Tagliaferri M, Cohen I, Tripathy D. 2002. Antiproliferative activity of Chinese medicinal herbs on breast cancer cells in vitro. Anticancer Res. 22(6C): 3843-3852.
Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S. 2005. Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ. 28(10): 1230-1246.
Cramer GR, Epstein E, Läuchli A. 1990. Effects of sodium, potassium and calcium on salt‐stressed barley. I. Growth analysis. Physiol Plant. 80(1): 83-88.
Efthimiadou A, Karkanis A, Bilalis D, Katsenios N. 2012. Cultivation of cow cockle (Vaccaria hispanica (Mill.) Rauschert): an industrial–medicinal weed. Ind Crops Prod. 40: 307-311.
Fallahi J, Ebadi MT, Ghorbani R. 2009. The effects of salinity and drought stresses on germination and seedling growth of clary (Salvia sclarea). Environmental Stresses in Crop Sciences 1(1): 57-67 (In Persian with English abstract).
Goering KJ, Eslick RF, Watson CA, Keng J, 1966. Utilization and agronomic studies of cow cockle (Saponaria vaccaria). Econ Bot. 20(4): 429-433.
Hagh Bahari M, Seyed Sharifi R. 2013. Influence of seed inoculation with plant growth promoting rhizobacteria (PGPR) on yield, grain filling rate and period of wheat in different levels of soil salinity. Environmental Stresses in Crop Sciences 6(1): 65-75 (In Persian with English abstract).
Hamada AM, El-Enany AE. 1994. Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biol Plant. 36(1): 75-81.
Hashemi A, Afshari RT, Tabrizi L, Barooti S. 2016. Effects of salinity on seed germination indices of blond plantain (Plantago ovata) at different temperatures. Iran J  Field Crop Sci. 47(2): 233-242 (In Persian with English abstract).
Hosseini H, Rezvani Moghadam P. 2006. Effect of water and salinity stress in seed germination on Isabgol (Plantago ovata). Iran J Field Crops Res. 4(1): 15-22.
Hosseini-Boldaji S, Babakhani B, Hassan-Sajedi R, Houshani M. 2020. Antioxidant properties of two alfalfa (Medicago sativa L.) ecotypes in response to sodium chloride salinity stress. J Plant Physiol Breed. 10(2): 45-58.
Hunter EA, Glasbey CA, Naylor REL. 1984. The analysis of data from germination tests. J Agric Sci. 102(1): 207-213.
Jamil M, Lee DBJ, Jung KY, Ashraf M, Lee SC, Rha ES. 2006. Effect of (NaCl) stress on germination and early seedling growth of four vegetable species. J Cent Eur Agric. 7: 273-282.
Jumaboev G-Sh, Makhkamov T-Kh, Berdibaeva DB. 2022. Anatomy and phytochemistry of the seeds of the medicinal and ornamental plant, Vaccaria hispanica (Mill.) Rauschert. Ann Phytomed. 11(1): 536-542.
Koike ST, Henderson DM, Tjosvold SA, Simmons EG. 1999. Outbreak of leaf spot of saponaria caused by Alternaria saponariae in California. Plant Dis. 83(7): 694-694.
Kumar M, Bussmann RW, Mukesh J, Kumar P. 2011. Ethnomedicinal uses of plants close to rural habitation in Garhwal Himalaya, India. J Med Plant Res. 5(11): 2252-2260.
Li W, Zhang H, Zeng Y, Xiang L, Lei Z, Huang Q, Li T, Shen F, Cheng Q. 2020. A salt tolerance evaluation method for sunflower (Helianthus annuus L.) at the seed germination stage. Sci Rep. 10(1): 1-9.
Lichtenthaler HK, Wellburn AR. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans. 603: 591-592.
Ma CH, Fan MS, Lin LP, Tang WD, Lou LG, Ding J, Huang CG. 2008. Cytotoxic triterpenoid saponins from Vaccaria segetalis. J Asian Nat Prod Res. 10(2): 177-184.
Mahdavi B, Alasvandyari F. 2018. Germination and morphophysiological responses of flax (Linum usitatissimum L.) ecotypes to salinity stress. J Plant Physiol Breed 8(2): 77-87.
Meesapyodsuk D, Balsevich J, Reed DW, Covello PS. 2007. Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. Plant Physiol. 143(2): 959-969.
Moradi, S. 2021. Economic valuation of ranges forage production using Hedonic pricing method – case study: Zemkan basin of Kermanshah Province. Human and Environment 19(1): 189-199.
Mostafavi K, Heidarian AR. 2012. Effect of salinity different levels on germination indices in four varieties of sunflower (Helianthus annuus L.). Int Res J Appl Basic Sci. 3(10): 2043-2051.
Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 59: 651-681.
Olivoto T, Nardino M. 2021. MGIDI: toward an effective multivariate selection in biological experiments. Bioinformatics 37(10): 1383-1389.
Olivoto T, Diel MI, Schmidt D, Lúcio ADC. 2021. Multivariate analysis of strawberry experiments: where are we now and where can we go? BioRxiv 2020.12.30.424876.
Omielan JA, Epstein E, Dvořák J. 1991. Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant Lophopyrum elongatum. Genome 34(6): 961-974.  
Öncel I, Keleş Y, Üstün AS. 2000. Interactive effects of temperature and heavy metal stress on the growth and some biochemical compounds in wheat seedlings. Environ Pollut. 107(3): 315-320.
Parida AK, Das AB. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf. 60(3): 324-349.
Pour-Aboughadareh A, Sanjani S, Nikkhah-Chamanabad H, Mehrvar MR, Asadi A, Amini A. 2021. Identification of salt-tolerant barley genotypes using multiple-traits index and yield performance at the early growth and maturity stages. Bull Natl Res Cent. 45(1): 1-16.
Rodríguez M, Canales E, Borrás-Hidalgo O. 2005. Molecular aspects of abiotic stress in plants. Biotecnol Apl. 22(1): 1-10.
Scott SJ, Jones RA, Williams W. 1984. Review of data analysis methods for seed germination. Crop Sci. 24(6): 1192-1199.
Shannon MC, Grieve CM. 1998. Tolerance of vegetable crops to salinity. Sci Hortic. 78(1-4): 5-38.
Shoemaker M, Hamilton B, Dairkee SH, Cohen I, Campbell MJ. 2005. In vitro anticancer activity of twelve Chinese medicinal herbs. Phytother Res. 19(7): 649-651.
Solat N, Asghari Zakaria R, Ebadi A, Sharifi Ziveh P. 2022. Selection of cow cockle (Vaccaria hispanica) ecotypes based on agronomic traits under different irrigation regimes. J Crop Breed. 14 (43): 135-144. 
Soltani A, Gholipoor M, Zeinali E. 2006. Seed reserve utilization and seedling growth of wheat as affected by drought and salinity. Environ Exp Bot. 55(1-2): 195-200.
Taghizadeh N, Ranjbar G, Nematzadeh G, Ramzanimoghdam M. 2018. Evaluation of salinity tolerance in allotetraploid cotton (Gossypium sp.) genotypes, using multivariate statistical methods and stress tolerance indices at germination stage. Iran J Seed Res. 4(2): 93-110 (In Persian with English abstract).
Tester M, Davenport R. 2003. Na+ tolerance and Na+ transport in higher plants. Ann Bot. 91(5): 503-527.
Thomas AG, Leeson JY, Clements D, Darbyshire S. 2007. Tracking long-term changes in the arable weed flora of Canada. In: Clements DR, Darbyshire SJ (eds.). Invasive Plants: Inventories, Strategies and Action. Topics in Canadian Weed Science. Volume 5. Canadian Weed Science Society, Québec, Canada. pp. 43-69.
Tian M, Huang Y, Wang X, Cao M, Zhao Z, Chen T, Yuan C, Wang N, Zhang B, Li C, et al. 2021. Vaccaria segetalis: a review of ethnomedicinal, phytochemical, pharmacological, and toxicological findings. Front Chem 9: 666280.
Wei Y, Dong M, Huang ZY, Tan DY. 2008. Factors influencing seed germination of Salsola affinis (Chenopodiaceae), a dominant annual halophyte inhabiting the deserts of Xinjiang, China. Flora-Morphology, Distribution, Functional Ecology of Plants 203(2): 134-140.
Wu H, Guo J, Wang C, Li K, Zhang X, Yang Z, Wang B. 2019. An effective screening method and a reliable screening trait for salt tolerance of Brassica napus at the germination stage. Front Plant Sci. 10: 530.
Zia S, Khan MA. 2004. Effect of light, salinity, and temperature on seed germination of Limonium stocksii. Can J Bot. 82(2): 151-157.