Quercetin and gamma-aminobutyric acid content and in vitro germination in pollen grains of Citrus species at different temperatures

Document Type : Research Paper

Authors

1 Ph.D. in Horticulture, Agriculture Jihad Organization, Southern Province of Kerman, Jiroft, Iran

2 Professor of Plant Developmental Biology, Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran

3 Ph.D. student, Department of Plant Science, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran

Abstract

Environmental factors such as temperature have negative effects on the reproductive phase and can cause yield loss in Citrus species. Pollen grains play a key and essential role in the fertility of plants. Quercetin and gamma-aminobutyric acid (GABA) are involved in certain biochemical functions to regulate growth and increase tolerance to biotic and abiotic stresses. The purpose of this study was to evaluate the effect of different temperatures on pollen germination and also on the levels of quercetin and GABA. The branches containing flowers of Cirus reticulata, C. sinensis, and C. paradisi were exposed to 5, 10, 15, 20, and 25 °C for six hours and then pollen grains were collected. Levels of quercetin and GABA were quantified by HPLC. The amount of quercetin was highest at 5 °C and then decreased by increasing the temperature in all species. Also, with increasing temperature, the amount of GABA decreased in all species. The highest and lowest pollen germination was observed at 25 °C and 5 °C, respectively.

Keywords


Article Title [Persian]

ارزیابی میزان کوئرستین، گاما آمینوبوتیریک اسید و جوانه زنی در دانه های گرده سه گونه مرکبات در دماهای مختلف

Authors [Persian]

  • سهیلا محمدرضاخانی 1
  • فرخنده رضانژاد 2
  • فرزاد گنجعلیخانی حاکمی 3
1 دکتری باغبانی، کارشناس جهاد کشاورزی، جنوب استان کرمان، جیرفت
2 - استاد زیست شناسی تکوین گیاهی، گروه زیست شناسی، دانشکده علوم، دانشگاه شهید باهنر کرمان، کرمان
3 دانشجوی دکتری، بخش علوم گیاهی، دانشکده علوم زیستی، دانشگاه خوارزمی، تهران
Abstract [Persian]

عوامل محیطی مانند دما دارای اثرات منفی بر فاز زایشی هستند و می ­توانند باعث کاهش عملکرد در گونه ­های مرکبات شوند.  دانه ­های گرده نقش کلیدی و اساسی در باروری گیاهان دارند. کوئرستین و گاما آمینوبوتیریک در کارکردهای بیوشیمیایی خاصی برای تنظیم رشد و افزایش تحمل به تنش­ های زیستی و غیرزنده دخالت دارند. هدف از این مطالعه ارزیابی دماهای مختلف بر جوانه زنی گرده و نیز میزان کوئرستین و گابا بود. شاخه ­های حاوی گل های پرتقال والنسیا (Citrus  sinensis var Valencia)، نارنگی کارا (C. reticulata var. Kara) و گریپ فروت ردبلاش (C. paradisi var. Red blash) در معرض دماهای مختلف (5، 10، 15، 20 و 25 درجه سانتی­ گراد) برای مدت شش ساعت قرار گرفتند و سپس دانه ­های گرده جمع آوری شدند. میزان کوئرسیتین و گابا  با استفاده از HPLC سنجیده شد. بیشترین و کمترین جوانه زنی گرده به ترتیب در دماهای 25 درجه سانتی ­گراد و 5 درجه سانتی ­گراد مشاهده شد.  بیشترین مقدار کوئرستین در دمای 5 درجه سانتی­ گراد به دست آمد و سپس با افزایش دما میزان آن در تمامی گونه ­ها کاهش یافت. همچنین با افزایش دما میزان GABA در هر سه گونه کاهش یافت.  بیشترین و کمترین جوانه زنی گرده به ترتیب در دماهای 25 درجه سانتی­ گراد و 5 درجه سانتی­ گراد مشاهده شد.

Keywords [Persian]

  • ترکیبات فنولی
  • جوانه زنی
  • دانه گرده
  • دمای پایین
  • متابولیت های ثانویه
Acar I and Kakani VG. 2010. The effects of temperature on in vitro pollen germination and pollen tube growth of Pistacia spp. Scientia Horticulturae 125: 569-572.
Alburquerque N, Garcia MF, and Burgos  L, 2007. Influence of storage temperature on the viability of sweet cherry pollen. Spanish Journal of Agricultural Research 5(1): 86-90.
Antognoni F, Ovidi E, Taddei AR, Gambellini G, and Speranza A, 2004. In vitro pollen tube growth reveals the cytotoxic potential of the flavonols, quercetin and rutin. Alternatives to Laboratory Animals 32: 79-90.
Baum G, Lev-Yadun S, Fridmann Y, Arazi T, Katsnelson H, Zik M, and Fromm H, 1996. Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development of plants. The EMBO Journal 15: 2988-2996.
Bor M, Seckin B, Ozgur R, Yılmaz O, Ozdemir F, and Turkan I, 2009. Comparative effects of drought, salt, heavy metal and heat stresses on gamma-aminobutryric acid levels of sesame (Sesamum indicum L.). Acta Physiologiae Plantarum 31: 655-659.
Botu M, Sarpe C, Cosmulescus S, and Botu I, 2002. The genetic control of pollen fertility, pollinating and fruit set for the Prunus domestica L. plum cultivars. Acta Horticulturae 577: 139-145
Campos M, Markham KR, Mitchell KA, and Proenca da Cunha A, 1997. An approach to the characterization of bee pollens via their flavonoid/phenolic profiles. Phytochemical Analysis 8: 181-185.
Charrier G, Ngao J, Saudreau M, and Ameglio T, 2015. Effects of environmental factors and management practices on microclimate, winter physiology, and frost resistance in trees. Frontiers in Plant Science 6: 259.
Crifo T, Puglisi I, Petrone G, and Recupero GR, 2011. Angela Roberta Lo Piero expression analysis in response to low temperature stress in blood oranges: implication of the flavonoid biosynthetic pathway. Gene 476: 1-9.
Distefano G, Hedhly A, Casas GL, Malfa SL, Herrero M, and Gentile A, 2012. Male-female interaction and temperature variation affect pollen performance in Citrus. Scientia Horticulturae 140: 1-7.
Dixon RA and Paiva NL. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085-1097.
Egea J, Burgos L, Zoroa N, and Egea L, 1992. Influence of temperature on the in vitro germination of pollen of apricot (Prunus armeniaca L.). Journal of Horticultural Science 67: 247-250.
Forlani G, Bertazzini M, and Giberti, S, 2014. Differential accumulation of γ–aminobutyric acid in elicited cells of two rice cultivars showing contrasting sensitivity to the blast pathogen. Plant Biology 16: 1127-1132.
Guerrero-Prieto VM, Vasilakakis MD, and Lombard PB, 1985. Factors controlling fruit set of Napoleon sweet cherry in western Oregon. Horticulture Science 20: 913-914.
Hedhly A, 2011. Sensitivity of flowering plant gametophytes to temperature fluctuations. Environmental and Experimental Botany 74(1): 9-16.
Irenaeus  TKS and Mitra SK, 2014. Understanding the pollen and ovule characters and fruit set of fruit crops in relation to temperature and genotype. Journal of Applied Botany and Food Quality 87: 157-167.
Izadi Khaleghabadi M, Rezanezhad F, and Manouchehr Kalantari K, 2008. Effects of some environmental and chemical factors on germination and pollen tube growth in petunia hybrid. Iranian Journal of Biology 21(4): 667-675 (In Persian with English abstract).
Jacobs M and Rubery PH, 1988. Naturally occurring auxin transport regulators. Science 241: 346-349.
Jefferies CJ, Brain P, Stott KG, and Belcher AR. 1982. Experimental systems and mathematical models for studying temperature effects on pollen-tube growth and fertilization in plum. Plant, Cell and Environment 5: 231-236.
Kinnersley AM and Lin F, 2000. Receptor modifiers indicate that 4-aminobutyric acid (GABA) is a potential modulator of ion transport in plants. Plant Growth Regulation 32: 65-76.
Kuhn DN, Chapall J, Boudet A, and Hahlbrock K, 1984. Induction of phenylalanine ammonia-lyase and 4-coumarate: CoA ligase mRNAs in cultured plant cells by UV induction or fungal elicitor. Proceedings of the National Academy of Sciences of the United States of America 81: 1102-1106.
Kumar S, Kaur R, Kaur N, Bhandhari K, Kaushal N, Gupta K, Bains TS, and Nayyar H, 2011. Heat-stress induced inhibition in growth and chlorosis in mungbean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reductionin oxidative stress. Acta Physiologiae Plantarum 33: 2091-2101.
Lembi CA, Morre DJ, Thomson KS, and Hertel R, 1971. N-1- naphthylphthalamic-acid-binding activity of a plasma membrane-rich fraction from maize coleoptiles. Planta 99: 37-45.
Li W, Liu J,  Ashraf U, Li G, Li Y, Lu W, Gao L, Han F, and  Hu J, 2016. Exogenous γ-aminobutyric acid (GABA) application improved early growth, net photosynthesis, and associated physio-biochemical events in maize. Frontiers in Plant Science 7: 919.
Lombard PB, Williams RR, Scott KG, and Jefferies CJ, 1972. Temperature effects on pollen tube growth in styles of Williams’ pear with a note on pollination deficiencies of comice pear. Compte Rendue du Symposium ‘Culture du Poirier’, 4-8 Septembre, Station de Recherche d’Anger, INRA, France. Simadess, Anger, France, pp. 265-279.
Loughnan D, Thomson J, Ogilvie J, and Gilbert, B, 2014, Taraxacum officinale pollen depresses seed set of montane wildflowers through pollen allelopathy. Journal of Pollination Ecology 13: 146-150.
Mayer R, Cherry J, and Rhodes D, 1990. Effect of heat shock on amino acid metabolism of cowpea cells. Plant Physiology 94(2): 796-810.
Michaeli S and Fromm, H, 2015. Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined? Frontiers in Plant Science 6: 419.
Mohammadrezakhani S, Hajilou J, and Rezanejad F, 2017. Evaluation of phenolic and flavonoid compounds in pollen grains of three Citrus species in response to low temperature. Grana 57: 214-222.
Muller F and Rieu I, 2016. Acclimation to high temperature during pollen development. Plant Reproduction 29: 107-118.
Oliver SN, Dennis ES, and Dolferus, R, 2007. ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant and Cell Physiology 48: 1319-1330.
Palanivelu R, Brass L, Edlund AF, and Preuss D, 2003. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114: 47-59.
Porter JR and Semenov MA, 2005. Crop responses to climatic variation. Philosophical Transactions of the Royal Society of London. Series B, Biological 360: 2021-2035.
Rahman K, 2007. Studies on free radicals, antioxidants, and co-factors. Clinical Interventions in Aging 2(2): 219-36.
Rezanejad F, 2009. Air pollution effects on structure, proteins and flavonoids in pollen grains of Thuja orientalis L. (Cupressaceae). Grana 48(3): 205-213.
Rezanejad F, 2012. Air pollution effects on flavonoids in pollen grains of some ornamental plants. Turkish Journal of Botany 36: 49-54.
Rhodes MJ, 1994. Physical role for secondary metabolites in plants: some progress, many outstanding problems. Plant Molecular Biology 24: 1-20.
Sahar N and Spiegel-Roy P, 1980. Citrus pollen storage. Horticulture Science 15: 81-82.
Slavkovic F, Greenberg A, Sadowsky A, Zemach H, Ish-Shaloma M, Kamenetskya R, and Cohena Y, 2016. Effects of applying variable temperature conditions around inflorescences on fertilization and fruit set in date palms. Scientia Horticulturae 202: 83-90.
Soost RK and Cameron JW, 1975: Citrus. In: Janick J and Moore JM (eds.). Advances in Fruit Breeding. Purdue University Press, Indiana, USA.
Stern RA and Gazit S, 1998. Pollen viability in lychee. Journal of American Society for Horticultural Science 123: 41-46.
Sukhvibul N, Whiley AW, Vithanage V, Smith MK, Doogan VJ, and Hetherington SE, 2000. Effect of temperature on pollen germination and pollen tube growth of four cultivars of mango (Mangifera indica L.). The Journal of Horticultural Science and Biotechnology 75(2): 214-222.
Tiansawang K, Luangpituksa P, Varanyanond W, and Hansawasd C, 2016. GABA (γ-aminobutyric acid) production, antioxidant activity in some germinated dietary seeds and the effect of cooking on their GABA content. Food Science and Technology. doi: http://dx.doi.org/10.1590/1678-457X.0080
Yang A, Cao S, Yang Z, Cai Y, and Zheng Y, 2011. γ-aminobutyric acid treatment reduces chilling injury and activates the defence response of peach fruit. Food Chemistry 129: 1619-1622.
Ylstra B, Busscher J, Franken J, Hollman PCH, Mol JNM, and van Tunen AJ, 1994. Flavonols and fertilization in Petunia hybrida: localization and mode of action during pollen tube growth. Plant Journal 6: 201-212.
Yoder K, Yuan RC, Combs L, Byers R, McFerson J, and Schmidt T, 2009. Effects of temperature and the combination of liquid lime sulfur and fish oil on pollen germination, pollen tube growth, and fruit set in apples. Horticulture Science 44: 1277-1283.
Yu GH, Zou J, Feng J, Peng XB, Wu JY, Wu YL, Palanivelu R, and Sun MX, 2014. Exogenous γ-aminobutyric acid affects pollen tube growth via modulating putative Ca2+ permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase. Journal of Experimental Botany 12: 3235-3248.
Vuletin Selak G, Perica S, Goreta Ban S, and Poljak M, 2013. The effect of temperature and genotype on pollen performance in olive (Olea europaea L.). Scientia Horticulture 156: 38-46.
Woo HH, Jeong BR, and Hawes MC, 2005. Flavonoids: from cell cycle to biotechnology. Biotechnology Letters 27: 365-374.  
 Zinn KE, Tunc-Ozdemir M, and Harper JF, 2012. Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany 61(7): 1959-1968.