Priming with L-arginine reduces oxidative damages in Carthamus tinctorius seedlings under the toxic levels of lead

Document Type : Research Paper

Authors

1 Department of Biology, Shahid Bahonar University of Kerman, Kerman, Iran.

2 Agricultural and Natural Resources Research and Education Center, Kerman, Iran.

3 Department of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.

10.22034/jppb.2020.13098

Abstract

Lead (Pb) stress adversely affects plant nutrient homeostasis and metabolism when present at an elevated concentrations in the surrounding media. In this research, the effects of 1mM Pb(NO3)2 on 14-day-old Carthamus tinctorius seedlings pretreated with arginine (Arg) as nitric oxide (NO) precursor, methylene blue (MB), a nitric oxide scavenger and Nω-nitro-L-Arg-methyl ester (LNAME) and a nitric oxide biosynthetic inhibitor, were investigated in the greenhouse of the Department of Biology, Shahid Bahonar University of Kerman, Iran. Pb exposure caused oxidative stress, reduced root and shoot growth and elevated malondialdehyde (MDA) content of the seedlings. Pb stress also increased the ascorbate peroxidase activity while decreasing the activity of the catalase (CAT) enzyme. Arg pretreatment decreased the harmful effects of Pb stress by increasing the root and shoot length and reducing the MDA content. Additionally, Pb-induced reduction of CAT enzyme activity in roots was reversed by the Arg pretreatment of the plants. In many characteristics which we measured, the effects of Arg pretreatment on alleviation of Pb-induced oxidative stress were reversed by LNAME and methylene blue pretreatments. Therefore, it seems that Arg induces a positive effect through NO production. Data showed that in the presence of Arg, the uptake and translocation of Pb declined and the application of Arg with LNAME or MB reversed these positive effects of Arg.  It seems that Arg can alleviate lead toxicity in plants through the prevention of Pb uptake and promoting the direct scavenging of reactive oxygen species or activating antioxidant enzymes. Also, results from the use of LNAME and MB indicated that the positive effect of Arg is probably related to its role in NO production.

Keywords


Article Title [فارسی]

استفاده از ال-آرژنین به منظور کاهش آسیب های اکسیداتیو در گیاهچه های گلرنگ تحت سطوح سمی سرب

Authors [فارسی]

  • فاطمه نصیبی 1
  • منصوره خداشناس 2
  • مهدی هاتفی 3
1 - بخش زیست شناسی دانشکده علوم پایه، دانشگاه شهید باهنر کرمان، کرمان.
2 مرکز تحقیقات کشاورزی و منابع طبیعی استان کرمان، کرمان.
3 گروه شیمی، دانشکده علوم پایه، دانشگاه ولی عصر رفسنجان، رفسنجان.
Abstract [فارسی]

تنش سرب هنگامی که با غلظت بالا در محیط اطراف وجود دارد، بر هموستاز و متابولیسم مواد مغذی گیاه تأثیر منفی می­ گذارد. در این تحقیق اثر تیمار نیترات سرب با غلظت 1 میلی مولار بر گیاهچه ­های 14 روزه گلرنگ، پیش تیمار شده با آرژنین به عنوان پیش ساز نیتریک اکساید، متیلن بلو (MB)،  جاروبگر نیتریک اکساید، و ان- نیترو- ال آرژنین متیل استر(LNAME) ، ممانعت کننده بیوسنتز نیتریک اکساید، در گلخانه گروه زیست شناسی دانشگاه شهید باهنر کرمان مورد مطالعه قرار گرفت.  تیمار سرب موجب ایجاد تنش اکسیداتیو، کاهش رشد ریشه و ساقه و افزایش محتوای مالون دی­آلدئید (MDA) در گیاهچه ­ها شد. تنش سرب همچنین فعالیت آنزیم آسکوربات پراکسیداز را افزایش و فعالیت آنزیم کاتالاز (CAT) را کاهش داد. پیش تیمار آرژنین با افزایش طول ریشه و ساقه و کاهش محتوای MDA موجب کاهش اثرات زیانبار تنش سرب شد. علاوه بر این، پیش تیمار آرژنین اثر سرب بر فعالیت آنزیم CAT در ریشه گیاهان را بهبود بخشید.  در بسیاری از متغیرهای مورد اندازه­ گیری، MB و LNAME اثر تعدیلی پیش تیمار آرژنین را خنثی کردند. بنابراین، به نظر می­ رسد آرژنین از طریق تولید نیتزیک اکساید موجب بروز اثرات مثبت در گیاهچه­ ها شده است. تجزیه داده­ ها نشان داد که در حضور آرژنین، جذب و انتقال سرب کاهش یافته و کاربرد آرژنین با LNAME یا MB این اثرات مثبت آرژنین را خنثی می کند. به نظر می­ رسد که استفاده از آرژنین ​​می تواند از طریق جلوگیری از جذب سرب و مهار مستقیم گونه­ های فعال اکسیژن یا فعال سازی آنزیم ­های آنتی اکسیدان، سمیت سرب را کاهش ­دهد. از طرف دیگر نتایج مربوط به استفاده از LNAME و MB نشان داد که اثر مثبت آرژنین احتمالا به دلیل توانایی آرژنین در تولید نیتریک اکساید است.

Keywords [فارسی]

  • آنزیم های آنتی اکسیدان
  • عامل ترانسلوکاسیون
  • فلزات سنگین
  • نیتریک اکساید
Arasimowicz-Jelonek M, Floryszak-Wieczorek J and Gwozdz EA, 2011. The message of nitric oxide in cadmium challenged plants. Plant Science 181: 612-620.
Bandehagh A, 2013. Comparative study of some characteristics in leaves and roots of two canola
genotypes under lead stress. Journal of Plant Physiology and Breeding 1(1): 23-33.
Bradford MM, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Annals of Biochemistry 72: 248-254.
 
Chen H, McCarig B, Melotto M, Yang S, He S and Howe GA, 2004. Regulation of plant arginase by wounding, jasmonate and the phytotoxin coronatine. Journal of Biological Chemistry 279: 45998-46007.
Colaka N, Torunb H, Gruzc J, Strnadc M and Ahmet Ayaza, 2019. Exogenous N-acetylcysteine alleviates heavy metal stress by promoting phenolic acids to support antioxidant defense systems in wheat roots. Ecotoxicology and Environmental Safety 181: 49-59.
Corpas FJ and Barroso JB, 2015. Nitric oxide from a green perspective. Nitric Oxide 45: 15-19.
Corpas FJ, Barroso JB and del Rıo LA, 2004. Enzymatic sources of nitric oxide in plant cells beyond one protein-one function. New Phytologist 162: 246-248.
Deng X, XiaY, Hu W, Zhang H and Shen, Z, 2010. Cadmium-induced oxidative damage and protective effects of N-acetyl-l-cysteine against cadmium toxicity in Solanum nigrum L. Journal of Hazardous Materials 180: 722-729.
Gouvea CM, Souza JF, Magalhaes AC and Martins IS, 1997. NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regulation 21: 183-187.
Heath RL and Packer L, 1968. Photoperoxidation in isolated chloroplasts. Archive of Biochemistry and Biophysics 125: 189-198.
Hsu Y and Kao C, 2004. Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regulation 42: 227-238.
Hu K, Hu L, Li Y, Zhang F and Zhang H, 2007. Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress. Plant Growth Regulation 53: 173-183.
Javed MT, Akram MS, Habib N, Tanwir K, Ali Q, Niazi NK, Gul H and Iqbal N, 2018. Deciphering the growth, organic acid exudations, and ionic homeostasis of Amaranthus viridis L. and Portulaca oleracea L. under lead chloride stress. Environmental Science Pollution Research 25: 2958-2971.
Kobylinska A, Reiter RJ and Posmyk MM, 2017. Melatonin protects cultured tobacco cells against lead-induced cell death via inhibition of cytochrome c translocation. Frontiers in Plant Science 8: 1560. doi: 10.3389/fpls.2017.01560.
Kopyra M and Gwozdz EA, 2003. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiology and Biochemistry 41: 1011-1017.
Kopyra M, Stachon-Wilk M and Gwozdz E, 2006. Effects of exogenous nitric oxide on the antioxidant capacity of cadmium-treated soybean cell suspension. Acta Physiologeae Plantarum 28: 525-536.
Laspina NV, Groppa MD, Tomaro ML and Benavides MP, 2005. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Science 169: 323-330.
Liu JH, Nada K, Honda C, Kitashiba H and Wen XP, 2006. Polyamine biosynthesis of apple callus under salt stress. Importance of the arginine decarboxylase pathway in stress responses. Journal of Experimental Botany 57: 2589-2599.
Milone MT, Segherri C, Clijsters H and Navari-Izzo F, 2003. Antioxidative responses of wheat treated with realistic concentration of cadmium. Environmental and Experimental Botany 50: 265-276.
Muranaka LS, Giorgiano TE, Takita MA, Forim MR, Silva LFC, Coletta-Filho HD, Machado MA and de Souza AA, 2013. N-acetylcysteine in agriculture, a novel use for an old molecule: focus on controlling the plant-pathogen Xylella fastidiosa. PLoS One 8(8): e72937. doi: 10.1371/journal.pone.0072937.
Nakano Y and Asada K, 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplast. Plant Cell and Physiology 22: 867-880.
Namdjoyan S, Kermanian H, Soorki AA, Modarres Tabatabaei S and Elyasi N, 2017. Interactive effects of salicylic acid and nitric oxide in alleviating zinc toxicity of safflower (Carthamus tinctorius L.). Ecotoxicology 26: 752-776.
Nasibi F, Barand A and Kalantari Kh, 2013. The effect of arginine pretreatment on germination, growth and physiological parameters in the increase of low temperature tolerance in Pistacia vera in vitro culture. International Journal of Agriculture and Crop Sciences 5: 1918-1925.
Nasibi F, Heidari T and Asra Z, 2013. Arginine application increases Ni accumulation and alleviates the Ni-induced oxidative stress in Hyoscyamus niger. Journal of Soil Science and Plant Nutrition 3: 680-689.                           
Nasibi F, Yaghoobi M and Kalantari Kh, 2011.Effect of exogenous arginine on alleviation of oxidative damage in tomato plant under water stress. Journal of Plant Interactions 6: 291-296.
Nejadalimoradi H, Nasibi F, Kalantari Kh and Zanganeh R, 2014. Effect of seed priming with L-arginine and sodium nitroprusside on some physiological parameters and antioxidant enzymes of sunflower plants exposed to salt stress. Agriculture Communications 2(2): 23-30.
Obroucheva NV, Bystrova EI, Ivanov VB, Antipova OV and Seregin IV, 1998. Root growth responses to lead in young maize seedlings. Plant and Soil 200: 55-61.
Okant M and Kaya C, 2019. The role of endogenous nitric oxide in melatonin-improved tolerance to lead toxicity in maize plants. Environmental Science Pollution Research 26: 11864-11874.
Pagnussat GC, Simontacchi M, Puntarulo S and Lamattina L, 2002. Nitric oxide is required for root organogenesis. Plant Physiology 129: 954-956.
Phang I, Leung DH, Taylor H and Burritt J, 2011. The protective effect of sodium nitroprusside (SNP) treatment on Arabidopsis thaliana seedlings exposed to toxic level of Pb is not linked to avoidance of Pb uptake. Ecotoxicology and Environmental Safety 74: 1310-1315.
Plewa MJ, Smith SR and Wanger ED, 1991. Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Journal of Mutation Research 247: 57-64.
Rockel P, Strube F, Rockel A, Wildt J and Kaiser WM, 2002. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. Journal of Experimental Botany 53: 103-110.
Seregin IV and Ivanov VB, 1997. Histochemical investigation of cadmium and lead distribution in plants. Russian Journal of Plant Physiology44: 915-921.
Shahid M, Dumat C, Pourrut B, Silvestre J, Laplanche C and Pinelli E, 2014. Influence of EDT and citric acid on lead-induced oxidative stress to Vicia faba roots. Journal of Soils and Sediments 14: 835-843.
Sharma SS and Dietz KJ, 2006. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany 57(4): 711-726.
Singh HP, Batish DR, Kaur G, Arora K and Kohli RK, 2008. Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environmental and Experimental Botany 63: 158-167.
Sonmez O and Pierzynski GM, 2005. Phosphorus and manganese oxides effects on soil lead bioaccessibility: PBET and TCLP. Water, Air, and Soil Pollution 166: 3-16.
Sun H, Zhang X, He X, Ahmed IM, Cao F, Zhang G and Wu F, 2014. N-acetylcysteine alleviates Cd toxicity and reduces Cd uptake in the two barley genotypes differing in Cd tolerance. Plant Growth Regulation 74: 93-105.
Syed Nabia RB, Tayadea R, Hussain A, Kulkarnic KP, Imran QM, Muna B and Yuna B, 2019. Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environmental and Experimental Botany 161: 120-133.
Titov AF, Talanova VV and Boeva NP, 1996. Growth responses of barley and wheat seedlings to lead and cadmium. Biologia Plantarum 38: 431-436.
Titov AF, Talanova VV, Boeva NP, Minaeva SV and Soldatov SE, 1995. The effect of lead ions on the growth of wheat, barley, and cucumber seedlings. Russian Journal of Plant Physiology 42: 457-462.
Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W,  Floh E and Scherer G.2006. Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell and Physiology 47: 346-354.
Velikova V, Yordanov I and Edreva A, 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Journal of Plant Science151: 59-66.
Wang Y, Loake, GJ and Chu C, 2013. Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death. Frontiers in Plant Science 4: 314. doi: 10.3389/fpls.2013.00314.
Xiong J, Fu G, Tao L and Zhu C, 2010.  Roles of nitric oxide in alleviating heavy metal toxicity in plants. Archives of Biochemistry and Biophysics 497: 13-20.
Xu H, Wang W, Yin H, Liu X, Sun H and Mi Q, 2010. Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant and Soil 326: 321-330.
Yan Y, Zhou YQ and Liang CH, 2015. Evaluation of phosphate fertilizers for the immobilization of Cd in contaminated soils. PLoS One 10(4): e0124022. doi: 10.1371/journal.pone.0124022.
Yang Y, Wei X, Lu J, You J, Wang W and Shi R, 2010. Lead-induced phytotoxicity mechanism involved in seed germination and seedling growth of wheat (Triticum aestivum L.). Ecotoxicology and Environmental Safety 73: 1982-1987.
Yoon J, Cao XD, Zhou, QX and Ma LQ, 2006. Accumulation of Pb, Cu, in native plants growing on a contaminated Florida site. Science of the Total Environment 368: 456-464.
Yu CC, Hung KT and Kao CH, 2005. Nitric oxide reduces Cu toxicity and Cu-induced NH4+ accumulation in rice leaves. Journal of Plant Physiology 162: 1319-1330.
Zafari S, Sharifi M, Ahmadian-Chashmi N and Mur LA, 2016. Modulation of Pb induced stress in Prosopis shoots through an interconnected network of signaling molecules, phenolic compounds and amino acids. Plant Physiology and Biochemistry 99: 11-20.
Zanganeh R and Rashid Jamei, 2020. Nitric oxide production and antioxidant responses in maize under lead stress. Journal of Plant Physiology and Breeding 10(1): 51-60.
Zhua G, Xiaoa H, Guod Q, Zhanga Z, Zhaoa J and Yang D, 2018. Effects of cadmium stress on growth and amino acid metabolism in two Compositae plants. Ecotoxicology and Environmental Safety 158: 300-308.