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Abstract

To study the effects of methanol on some physiological and biochemical characteristics of pot marigold (Calendula officinalis
L.) under drought stress, a factorial experiment was conducted based on a randomized complete block design with three
replications under greenhouse conditions in 2017. Factors included the foliar application of methanol at four levels [0
(control), 20%, 30% and 40%] and four irrigation treatments (irrigation at 40, 60, 80 and 100% of field capacity). Increasing
water deficit, significantly reduced chlorophyll a, chlorophyll b, total chlorophyll, carotenoid, Fv/Fm and stomatal
conductance, whereas 20 and 30% methanol application significantly improved these traits. Irrespective of 40% methanol
application, the moderate and severe water deficit treatments led to the decrease of chlorophyll a, total chlorophyll, carotenoid
and Fv/Fm. Also, water deficit showed a significant increase in soluble sugars content, proline accumulation and CAT, POD
and PPO activity. Compared with the non-methanol treatment, the application of methanol increased the above- mentioned
characteristics. The maximum values of these variables were obtained with the application of 40% methanol under severe
water limitation conditions. It was indicated that the improvement of biomass due to methanol spraying was associated with
the increase of antioxidant defense abilities and maintaining many physiological processes in the stressed plants.
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Introduction

Calendula officinalis L. (marigold) from the
Asteraceae family is an annual herbaceous plant that
has been used for herbal medicine, pharmaceutical
industry and chemical composition. Flowers of this
plant contain compounds that can be broadly applied
as an antiseptic, anti-inflammatory and cicatrizing as
well as a light antibacterial and antiviral agent
(Khalid et al. 2010). Changes in physiological and
photochemical processes due to a change in
environmental conditions such as water deficiency or
agricultural practices lead to a change in plant growth
and productivity (Pallardy 2010).

Water deficiency imposes one of the most
important constraints to photosynthesis, plant growth
and crop productivity (Hosseinzadeh et al. 2015).
The impact of the drought on plant species depends
on the variety, severity and duration of the stress as
well as on the development stage (Simova-Stoilova
et al. 2008). Closed stomata which reduce
transpiration and conserve water in plants is the first
mechanism of plants to face dehydration stress
(Sikder et al. 2015), which in turn limits carbon
fixation, reduces NADP* regeneration by the Calvin
Cycle and decrease the photochemical activities

(Arora et al. 2002; Monakhova and Chernyadev
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2002; Barbosa et al. 2015). Exposure of plants to
stress is known to induce the formation of reactive
oxygen species (ROS), which are involved not only
in damage mechanisms but also in cell growth
processes (Bernstein et al. 2010). ROS such as
superoxide, hydrogen peroxide and hydroxyl radical
are highly reactive and can seriously disrupt normal
metabolism through oxidative damage on lipids,
proteins and nucleic acids (Ashraf 2009). Also, water
deficit can damage pigments and plastids, reduce
chlorophyll a, chlorophyll b and other carotenoids,
hydrolyze proteins and prevalent photochemical
reactions in most plants (Reddy et al. 2004). Recent
investigations have shown that chlorophyll and its
derivatives act as antioxidants to prevent oxidative
DNA damage and lipid peroxidation both by
chelating reactive ions and by scavenging free
radicals (Hsu et al. 2013). As a result, the induction
of antioxidant enzyme activities is a general
adaptation strategy that plants use to overcome
oxidative stresses (Foyer and Noctor 2003).

The enzymatic antioxidant defense system in the
plant cell includes superoxide dismutase (SOD),
catalase (CAT), peroxidase (POD), polyphenol
oxidase (PPO), ascorbate peroxidase (APX),
glutathione reductase (GR), etc. Removing the
highly toxic H>O. produced during dismutation, is
essential for the cell to avoid inhibition of enzymes
such as those controlling the Calvin cycle in the
chloroplast (Creissen et al. 1994), while the H,O;
produced can be scavenged by CAT and a variety of
POD. CAT, which is only present in peroxisomes,

dismutates H.O. into the water and molecular

oxygen, whereas POD decomposes H.0. by
oxidation of co-substrates such as phenolic
compounds and/or antioxidants. Different activities
of ROS scavenging enzymes including CAT, POD
and PPO under stress conditions and at different
growth stages have additionally been reported by
Khalilzadeh et al. (2017), Das and Roychoudhury
(2014) and Seysd Sharifi et al. (2017). Usually, the
amount of the produced dry matter has a direct
relationship with the photosynthesis efficiency of the
plant and also how CO- fixation occurs in crops.
One of the important strategies for increasing
carbon dioxide concentration in plants is using
chemicals such as methanol that can increase the
concentration of CO: in a plant and improves
photosynthesis rate and growth under water deficit
conditions (Ramadant and Omran 2005). Methanol is
very simple alcohol, plays a significant role as a
precursor in chemical synthesis and/or as a solvent.
Additionally, methanol, as the less toxic compound,
is used in pharmacology for drug dissolution and the
food industry (Pohanka 2016). Several reports
suggested that foliar applications of methanol
increases CO; assimilation in plant’s photosynthetic
pigments and helps to stabilize photosynthesis under
drought stress (Ramirez et al. 2006; Ganjeali 2012).
Ivanova et al. (2001) reported that the foliar
application of methanol indirectly stimulates the
methyltrophic bacteria that live on most plant leaves.
These bacteria consume some of the methanol on the
leaves and induce plant growth via auxin and
cytokine production. However, the mechanism by

which methanol may affect growth and yield is
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unknown. It is known that methanol increases
stomatal conductance and decreases leaf temperature
and transpiration (Makhdum et al. 2002), increases
glucose metabolism and swelling pressure (Rajala et
al. 1998), stem length and dry weight (Hernandez et
al. 2000) and as a result, increases the plant yield.
Abundant dioxide carbon supply from methanol
causes the photo respiration to be shifted from
catabolism to anabolism (Zebic et al. 1997).
Photorespiration can be minimized with methanol
spray, since 25% of carbon wastes during
photorespiration (Desclaux et al. 2000). That is
because methanol is absorbed in the plant and is
rapidly metabolized to CO2 in the plant tissue due to
the smaller size of methanol rather than CO, (Gout et
al. 2000).

A better understanding of the antioxidant status
and physiological responses of pot marigold may
help the programs in which the objective is to
improve the yield under drought stress. Therefore,
this study aimed to evaluate the effects of methanol
on physiological responses (i.e., antioxidant enzyme
activity, proline, soluble carbohydrate, chlorophyll-
a, chlorophyll-b, total chlorophyll, relative water
content (RWC), carotenoid, stomatal conductance)

of marigold under water stress conditions.

Material and Methods

A factorial experiment based on randomized
complete block design with three replications was
conducted under greenhouse conditions at
Mohaghegh Ardabili University, Iran, in 2017. The
area is located at 38° 15’ N latitude and 48° 15" E

longitude with an elevation of 1350 m above mean
sea level. Experimental factors included foliar
application of methanol at four levels [0 (control)
(M1), 20% (M2), 30% (Ms) and 40% (Ma4)] and four
irrigation treatments [irrigation at 40 (l1), 60 (1), 80
(Is) and 100% (l4) field capacity]. Pots were filled
with a medium that contained one part sand, two
parts soil and one part manure. Seeds of marigolds
were prepared from Pakan Bazr Isfahan Co. and
sown on 21st April in 2017. For each treatment five
plants were kept in each pot. Cultural practices such
as pest control, irrigation, hoeing and weeding were
similar for all treatments. Foliar application of
methanol was done at the beginning of flowering (60
days after sowing) in the middle of the day. The
plants were watered at the field capacity until the
emergence of the second leaf. At this developmental
stage, water was withheld to induce water-deficit
treatments. The soil humidity was measured when
plants had four fully developed leaves (harvest time;
the end of the experiment) by weighing soil samples
and reweighing them after drying at 105 °C for 24 h.
Soil humidity was determined at 0-20, 20-40 and
beyond 40 cm depth. The measurements were done
on five samples for each depth in each water
treatment (Sahnoune et al. 2004). The soil was silty
loam, with the pH of about 6.9. The air temperature
of greenhouse ranged from 22-27 °C during the day
and 18-21°C during the night. Humidity ranged from
60 to 65%.

The leaves were detached for measuring the
following characteristics at the flowering stage. The

1st to 4th youngest leaves were selected as the tissue
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samples. The quantum vyield and stomatal
conductance were measured on the uppermost fully
expanded leaf using a fluorometer (chlorophyll
fluorometer; Optic Science-OS-30, USA) and leaf
porometer (Model SC-J Eijkelkamp, Netherlands),
respectively (Kheirizadeh Arough et al. 2016). RWC
was estimated gravimetrically according to the
method of Tambussi et al. (2005). Chlorophyll and
carotenoids were obtained based on Arnon (1949).
Soluble sugars were determined based on the phenol
sulphuric acid method (Dubois et al. 1956). Leaf
proline content was measured according to Bates et
al. (1973).

To measure the enzyme activity, 0.2 g of fresh
tissue was used. To extract the protein, 0.2 g of
plant’s fresh tissue was crushed by using liquid
nitrogen and then 1 ml of buffer Tris-HCI (0.05 M,
pH = 7.5) was added. The mixture was centrifuged
for 20 min at 16000 xg (13000 rpm) and 4 °C, then
the supernatant was used for the enzyme activity
measurements. CAT, POD and polyphenol oxidase
(PPO) activity was assayed according to Karo and
Mishra (1976). To measure the above-ground
biomass per plant, five plants of each pot were
harvested.

Analysis of variance and comparison of means
was performed using SAS computer software. The
main effects of factors and their combinations were
tested using the least significant difference (LSD)

test.

Results

Table 1 showed a significant interaction of water
limitation by methanol for the total chlorophyll,
chlorophyll-a, carotenoid, Fv/Fm, leaf proline, total
soluble carbohydrate, stomatal conductance,
biomass, CAT, POD and PPO (Table 1).
Chlorophyll-b and leaf RWC were affected by both

main factors of water deficit and methanol (Table 1).

Photosynthetic pigment content

The highest chlorophyll-a and total chlorophyll
content (8.16 and 13.31 mg g* FW, respectively)
were obtained by the 40% methanol treatment under
well-watered conditions (I:M4). Whereas, the lowest
values (3.12 and 3.99 mg g FW respectively) were
observed in IsM; (Table 2). Under well-watered
conditions (1), the chlorophyll-b content was
significantly higher than moderate (Is) and severe
drought stress (ls). Reduction in chlorophyll-b in
response to moderate and severe drought stress were
29.32 and 71.58%, respectively. Whereas, plants
treated with 40% methanol had significantly higher
chlorophyll-b values than the 20% methanol
treatment.

Methanol caused increases of total chlorophyll
content, from 11.50 mg g* FW at no ethanol to 13.31
mg g* FW at 40% methanol under well-watered
conditions  (Table 2).

concentration tor 30 and 40% decreased chlorophyll-

Increasing  methanol
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a, total chlorophyll and carotenoid in the moderate
(Is) and severe (ls) drought stress conditions as
compared with 1:Mo (Table 2).

Maximum efficiency of PSII (Fv/Fm ratio)

Our findings indicated that 1:M. had the higher
maximum quantum efficiency of PSIlI (0.79),
whereas 1sM; had the lowest maximum quantum
efficiency of PSII (0.32) (Table 2). Effect of severe
drought stress (1) on Fv/Fm ratio was higher than the
moderate and low drought stresses (Is and I2) (Table
2).

Proline and soluble sugars

The highest (17.68 mg g* Fw) and the lowest (4.12
mg g* Fw) proline content belonged to 1sM4 and
I:M;, respectively. Proline content in plants
subjected to the moderate drought stress was 22.65
and 30.76% higher than the control when 30% and
40% methanol was applied, respectively (Table 2).
Severe drought stress increased the proline content
by 32.26 and 44.79% as compared to the control at
30% and 40% methanol, respectively (Table 2). It
seems that methanol may improve photosynthesis
through an increase in the chlorophyll content (Table
2) which in turn leads to an increase in the amount of
assimilates (sugars) produced (Table 2). 1sM4 and
1.M3 had higher total soluble carbohydrates than the

other treatments.

Stomatal conductance

Our results showed that 1:M4 had the highest (54.72
mmol/m%s) and 1;M: had the lowest (40.36
mmol/m?/s) stomatal conductance among all
treatments. Our data also revealed that drought and
methanol application treatments significantly
differed in terms of stomatal conductance (Table 2).
The stomatal conductance was significantly
decreased with the increase in drought stress
intensity, but with increasing methanol concentration
to 40%, stomatal conductance was increased. Plants
treated with 30% and 40% methanol increased
stomatal conductance at the moderate drought stress
as much as 7.43 and 9.41%, respectively. Increased
stomatal conductance due to severe drought stress at
the above-mentioned methanol concentrations were
2.48 and 4.04%, respectively.

Leaf RWC

Variation of RWC values was observed in response
to the drought stress intensity. The adverse effect of
water stress on RWC at the severe drought stress was
significantly greater than the moderate drought stress
(Table 1). RWC decreased about 9.16 and 26.66% in
response to moderate and severe drought stresses,
respectively as compared to the control (Table 1).
The highest RWC (70.40%) belonged to the foliar
application of 40% methanol (Table 1) increased it

by 6.84% compared to the zero ethanol treatment.
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The activity of CAT, POD and PPO enzymes

The highest increase in the CAT activity (0.065 OD
g protein min) was obtained at the severe drought
stress plus 40% methanol (1:M.). The 10% methanol
under well water irrigation (1:M;) had the lowest
CAT activity (0.0039 OD pg protein min™). On the
other hand, there was an increase of about 150% and
80.09% in the activity of CAT and POD enzymes,
respectively, at the severe drought stress plus 40%
methanol (1sM,) in comparison with 1:M; (Table 2).
Increasing the intensity of drought stress led to the
increased POD and PPO activity (Table 2). Maximal
activities of POD (0.038 OD pg protein min™) and
PPO (0.045 OD g protein min) activity in pot
marigold plants were observed under severe drought
stress plus 40% methanol (1sM4), while the minimum
value was observed at 1:M; (Table 2).

Biomass

In the methanol-treated plants, the highest biomass
(2.16 g plant?) was obtained under well water
irrigation plus 40% methanol (1:M.), whereas the
lowest biomass was obtained at the severe drought
stress when no methanol a 12.9% increase in biomass
under severe water stress (Table 2).

Discussion

Reduction in chlorophyll concentration is identified
as a drought response mechanism to minimize the
light absorption by chloroplasts (Pastenes et al.
2005). The decreased level of chlorophyll content is
caused by photoinhibition and photodestruction of
pigments and pigment-protein complexes and

destabilization of photosynthetic membrane both
induced by drought (Huseynova 2012). Methanol
increases stomatal conductance, proline and soluble
carbohydrate, cell swelling and chlorophyll and
carotenoid content (Zbiec et al. 2003; Ramberg et al.
2002) which was corresponded with our results.
Also, the foliar application of methanol increased
photosynthetic capacity and dry matter. Methanol is
smaller than the CO; and can be easily used by C;
plants to increase dry matter and as a carbon source
(Ramirez et al. 2006). Ahmadpour and Hosseinzadeh
(2016) reported that increasing the methanol from
25% to 35% decreased chlorophyll content, probably
due to the toxic effects of methanol at high
concentrations. Since carotenoids play an important
role in photoprotection (Munne-Bosch and Penuelas
2003), their increased content under the control (M)
and the lowest concentration of methanol (M),
indicates a higher need for photoprotection.

The Fv/Fm ratio is a suitable index for
evaluating photosynthetic apparatus in plants
exposed to environmental stress (Giorio 2011).
Decreasing the Fv/Fm ratio is a reason for the
significant effect of environmental stresses on
photosynthetic efficiency caused by a decline in the
transfer of electrons from PSII to PSI and light
protection (Sikder et al. 2015). These findings
indicate the disorganization of PSII reaction centers
under water-stress conditions (Huseynova 2012).
Our results showed that the application of the
methanol reduced the negative effects of water
shortage stress in the pot marigold plants. It is
interesting to note that plant growth occurred in
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plants that were treated exclusively with methanol.
In 11 and I; irrigation levels, increasing methanol
concentration led to a gradual increase of PSII
efficiency. But at the moderate and severe drought
stress (Is and li), increasing of methanol
concentration after 30%, Fv/Fm ratio decreased.
Because higher levels of methanol damage
chlorophyll and PSII reaction centers, this can
happen in drought, heat and light stress conditions
(Yazdi Far et al. 2015). Therefore, in the present
drought  conditions, the improvement of
photosynthesis of wheat plants under methanol
application as compared with the non-methanol
treatment was associated with non-stomatal factors.
The results of foliar applications of methanol
solution under controlled and low-stressed
conditions in this study confirm prior observations
reporting an increase of growth and yield in plants
(Nonomura and Benson 1992). Nonimura and
Benson (1992) showed that treated plants with
methanol can increase net photosynthesis and
improve their performance.

Our results revealed that the accumulation of
proline was higher under drought and methanol
treatments (Table 2). The extent of these changes was
related to the intensity of the stress and concentration
of methanol. This phenomenon may be part of a
mechanism that prevents loss of water in the plant
through osmotic adjustment. The increment of this
solute coincided with low rates of maximum
efficiency of PSII response to drought conditions
(Table 2). In agreement with our results, others have
shown that chlorophyll-a and chlorophyll -b
positively correlated with RWC and stomatal

conductance, but negatively correlated with
carotenoid and proline contents (Ghobadi et al.
2013). Also, the lower concentration of proline
during water deficit was associated with a decrease
of stomatal conductance (Pompelli et al. 2010).
Increased proline accumulation was reported in
wheat under drought and salinity stress (Khalilzadeh
et al. 2017; Seyed Sharifi et al. 2017). Proline
accumulation under stressed conditions supplies
energy for growth and survival and thereby helps the
plant to tolerate the stress. The reduced proline
oxidase may be the reason for increasing proline
accumulation (Manivannan et al. 2008). However, in
most cases, the osmotic adjustment was not the main
consequence of proline accumulation, which was
involved in other mechanisms related to sugar
content and protection against oxidative damage (de
Campos et al. 2011). Plants facilitate the decrease of
osmotic potential and a further increase of water
absorption through an increase in the soluble sugars
content. Accumulation of sugars in different parts of
the plants has been reported in response to
environmental stresses (Prado et al. 2000;
Khalilzadeh et al. 2017).

Foliar applications of methanol may also be
used as an appropriate way to enhance the
assimilation of CO; (Ganjeali, 2012). The positive
impact of methanol, however, may be due to its role
in reducing photorespiration and enhancing the net
photosynthesis process (Nadali 2009). Since the
accumulation of carbohydrates has been reported
during various abiotic stresses, a decrease in sugar
content as a result of the elimination of stress seems
reasonable (Archbold 1940).
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Foliar applications of methanol under water
deficit conditions therefore may alleviate the
damages caused by drought stress and also reduce the
rate of stomatal conductance in plants. Our results
agree with the data obtained by Khalilzadeh et al.
(2017) and Boureima et al. (2012) about the decline
in the stomatal conductance in plants subjected to
drought stress. Makhdum et al. (2002) also reported
that foliar application of methanol increased leaf
thickness in cotton and this, in turn, led the plants to
better maintain RWC in their leaves.

The mechanism of drought tolerance in general,
and the mechanism of antioxidant production in
particular, differ among species and even among
cultivars of a single species. Furthermore, the form
and functions of organs and tissue undergo
substantial time course changes, so the capability of
plants to respond to drought stress depends
predominantly on the genes that are expressed at the
stage of development during which the stress is
imposed (Ashraf 2009).

CAT activity at all methanol concentrations was
higher than the non-treated plants. The increase of
CAT activity in plants under water stress was also
reported in other studies (Quartacci et al. 1995;
Khalilzadeh et al. 2017). Any increase in the activity
of antioxidant enzymes may also be associated with
the induction of antioxidant reactions which protect
plants against oxidative damages. Increasing
methanol concentrations increased POD activity
under well-water and drought stress conditions. An
increase in POD activity was also observed by
different authors under drought and saline conditions
(Khalilzadeh et al. 2012; Kheirizadeh et al. 2016;

Babaei et al. 2017). Increased antioxidant enzyme
activities due to the foliar applications of methanol
may somehow indicate the alleviation of oxidative
stress and the scavenging of ROS by antioxidant
enzymes. Preventing the oxidative damages brought
to the plant cells during drought stress has been
proposed as one of the stress tolerance mechanisms
and the extent of this prevention is associated with
the increased antioxidant activity (Kalantar Ahmadi
et al. 2015). Saruhan et al. (2012) stated that external
application of the growth regulator increased
antioxidant enzyme activity in the drought-tolerant
maize genotypes compared to the susceptible entries.

Increasing foliar application rates of methanol
under normal and stress conditions in the current
study increased the pod and PPO activity under
drought stress conditions. Stress tolerance in plants
may be associated with their ability to scavenge ROS
(Saruhan et al. 2012). According to the results
obtained in the current experiment, however, the
effect of methanol in alleviating the negative impacts
caused by drought stress was mainly due to an
increase in several enzyme activities.

Conclusions

The results showed that water stress reduced the
biomass of the pot marigold plants. Methanol foliar
application improved total chlorophyll, proline,
soluble sugars, stomatal conductance, CAT, POD
and PPO enzyme activity under normal and stress
conditions. The application of 40% methanol was
more effective than the other concentrations.
Increasing the methanol from 30% to 40% under
drought stress conditions decreased chlorophyll a,
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total chlorophyll, carotenoid and Fv/Fm, probably
due to the toxic effects of methanol at high
concentrations. It seems that improvement of
biomass by the application of methanol in pot
marigold plants was associated with the increase of
antioxidant defense abilities and maintenance of

many physiological processes.
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